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1. Introduction

A typical NMR experiment consists of a sample of nuclei of spin
I placed in a strong, uniform magnetic field B

*

0 (the magnetic field
is taken to be along the laboratory z-axis; Bz ¼ B0;Bx ¼ By ¼ 0 and
I is the nuclear spin quantum number) until the sample reaches
thermal equilibrium. In an external field, the magnetic moment
l
*
¼ c bI

*

of each spin precesses around B
*

0 at the Larmor frequency
x0 ¼ &cB0, where c is the gyromagnetic ratio, which depends on
the type of nucleus in question. For each spin, we know the z-com-
ponent of its angular momentum; at the same time, due to quan-
tum mechanical uncertainty, the x- and y-components are
unknown and all possible orientations along the surface of a cone
for l

*
are allowed. We thus employ the idea of the precession of l

*
,

but the exact location of the vector at any given time cannot be
predicted. Although the model of precession is physically inaccu-
rate, it is a useful analogy to classical mechanics nonetheless. The
z-component of l

*
;lz, may assume one of 2Iþ 1 values, each with

corresponding energies separated by !hx0. Each energy state (ori-
entation) is populated according to the Boltzmann distribution.
For spin-1=2 ðI ¼ 1=2Þ particles, two energy states are allowed
(two-level system): the spins may have lz components either par-
allel (positive lz) or antiparallel (negative lz) to the external field.

At equilibrium, because each spin in the sample precesses with
arbitrary phase, the components of the magnetic moments in the
xy-plane perpendicular to B0 cancel. Moreover, a slightly higher
number of spins populate the lower-energy states, so that the total
(or ‘bulk’) magnetization, M

*

, lies along the z-axis at equilibrium:
M0 ¼ Mz.

Radio frequency (RF) pulses perturb the equilibrium population
distribution, to generate phase coherence among the various spins
(see Section 2.1.1.2). For a given spin, the z-component of angular
momentum is precisely defined, while the x- and y-components
stay indeterminate. Thus, the x- and y- components of the bulk-
magnetization Mx and My oscillate in time.

Relaxation is the irreversible evolution of the spin system to-
wards a steady state [1,2]. For instance, the system returns to equi-
librium after a perturbation by an RF pulse or series of RF pulses.
Traditionally, the approach to equilibrium has been classified into
two broad types – longitudinal relaxation and transverse relaxation.
Longitudinal relaxation, also called spin–lattice relaxation, de-
scribes the dissipation of energy by the spins into their surround-
ings (called the lattice), which tends to restore the equilibrium
population distribution (with slightly more spins in the lower en-
ergy states as dictated by the Boltzmann distribution at a given
temperature), and consequently reestablishes the z-component of
the magnetization (colinear with the external field). Transverse
relaxation, sometimes called spin–spin relaxation, describes the
dephasing (loss of precessional coherence among the spins) that
takes place in the xy-plane, leading to a decay in transverse magne-
tization. Both types of relaxation result from random fluctuations
of local magnetic fields, produced by a variety of intramolecular
and intermolecular magnetic interactions that are modulated by
the stochastic (Brownian) coupling of the spin-system to the
lattice.

Longitudinal and transverse relaxation are each characterized
by a time constant (T1 and T2, respectively) and a corresponding

relaxation rate (R1 ¼ 1=T1 and R2 ¼ 1=T2). Transverse relaxation
takes place more rapidly than does longitudinal relaxation; that
is, the decay in transverse magnetization (primarily due to a loss
of precessional coherence) takes place faster than the restoration
of the equilibrium magnetization (as a result of dissipation of en-
ergy by the spins into the lattice, thereby restoring equilibrium
populations of the various energy levels). Generally, 2R2>R1,
though exceptions to this have been noted [3,4].

In this review, we shall focus primarily on the chemical shift
anisotropy (CSA) and dipole–dipole (DD) interactions, which are
by far the two most significant interactions contributing to the
relaxation of spin-1/2 nuclei in the solution state. Both are essen-
tially intramolecular interactions modulated by random molecular
tumbling in solution.

Since molecular rotational diffusion and internal dynamics
determine the nature of the stochastic processes that modulate
the interactions contributing to relaxation, an understanding of
the Brownian motion of spin-containing molecules enables one
to determine information regarding their diffusive, shape depen-
dent, and dynamical properties based upon observed relaxation
rates. This determination is the ultimate goal of the theory de-
scribed in this review.

1.1. Outline of the discussion

In the following, we begin by presenting the Wangsness–
Bloch–Redfield [5–15,1] density matrix relaxation theory (Sec-
tion 2), which leads to a discussion of the rotational Brownian
motion that modulates the spin interactions (Section 3) leading
to relaxation. We consider first the rotational diffusion of sin-
gle-domain, rigid molecules rotating within various orienting
potentials that may result from, for example, a liquid crystalline
medium (Section 4 and 5). As a special case, we treat the zero-po-
tential, that is, the diffusion of rigid molecules in an isotropic
solvent.

Next, we consider the results of rotational diffusion theory
within the framework of relaxation theory, in order to predict
relaxation rates measured through NMR spectroscopy. These
models may be fitted to experimentally measured NMR relaxa-
tion data in order to determine the diffusive hydrodynamic
properties (shape, rigidity, etc.) of the macromolecules studied
[16–18]. Throughout this review, our goal is to provide thorough,
detailed, and (where possible) self-contained explanations, start-
ing from first principles. Emphasis is placed upon completeness
and clarity rather than brevity or mathematical elegance. Where
extended calculations or background information obfuscate
the overarching arguments of the review, we make reference
to appendices containing more detailed explanations and
derivations.

Several excellent publications have discussed individual topics
covered in this review at length. However, we felt that a compre-
hensive, ab initio, self-consistent treatise of all theoretical princi-
ples of interest in the calculation of spin-relaxation rates in
modern biomolecular NMR, was lacking. We have attempted to
provide such a treatment in this review. All relevant aspects of
quantum statistics, diffusion theory, NMR interactions and relaxa-
tion theory have been introduced assuming no prior background.
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We focus here on the theory rather than applications providing de-
tailed analytical expressions wherever possible.

2. Density matrix relaxation theory

Consider an ensemble of identical spins in solution, in which
each spin is surrounded by the neighboring spins; the rest of the
universe excluding the specific spins under consideration is re-
ferred to as the lattice or bath. Interactions between the spins
and the external static field of the NMR spectrometer are treated
quantum mechanically. The larger lattice is treated classically with
continuous energy levels due its large number of degrees of free-
dom. The temperature of the lattice is assumed to remain constant,
even as energy is exchanged with the spins (the lattice’s heat
capacity is considered to be infinite).

This treatment describes a weak stochastic coupling between
the two systems (spins and lattice) arising from the modulation
of the local magnetic environment surrounding each spin, due to
the Brownian motion of the particles containing the spins. That
is, each spin, in addition to interacting with the static spectrometer
field, interacts with local magnetic fields (originating from the lat-
tice) that are time-dependent and random due to the molecular
diffusion.

During relaxation, longitudinal (i.e. parallel to the static field)
components of the local fields act to either augment or oppose
the applied field, and thereby cause the Larmor frequencies of
the spins to vary because the spins ‘see’ an external field that var-
ies with time. This process is adiabatic in the sense that there is
no exchange of energy between the spins and lattice, but it con-
tributes to the loss of phase coherence that produces the macro-
scopic phenomenon of transverse relaxation. Thus, stochastic
variations in longitudinal local field components cause transverse
relaxation.

Transverse components of the local random fields, if fluctuat-
ing at a frequency corresponding to the energy difference be-
tween two states of the spin system, may induce a transition
in a nearby spin, with an accompanying and opposite transition
in the lattice. This process is non-adiabatic: the spin system
and lattice directly exchange energy. Since the lattice is assumed
to remain in thermal equilibrium, with far greater population of
the lower energy states, it is more probable that such interac-
tions involve a transition in the lattice from lower to higher en-
ergy, and a spin transition from higher to lower energy, thus
reducing the population of higher energy levels in the spin sys-
tem and ultimately returning it to equilibrium. Thus, fluctuations
in the transverse local field components cause longitudinal
relaxation.

Because the lattice is treated classically, while the individual
spins are treated quantum mechanically, this theory is usually re-
ferred to as semiclassical relaxation theory. The results of semiclas-
sical relaxation theory can be confirmed by a rigorous quantum
mechanical treatment of the problem [1,10], considering the limit-
ing case of an infinite lattice temperature.

2.1. The density operator

2.1.1. Definition and properties
Most relaxation analyses monitor the behavior of bulk magne-

tization, i.e. that of an ensemble of spins in a finite sample. In or-
der to formulate an analytical theory of this behavior and
reconcile it with semiclassical relaxation theory, a quantum
mechanical formalism describing the ensemble of spins is neces-
sary. The mathematical tool used to describe a quantum mechan-
ical ensemble such as a system of spins is the density operator
[19].

2.1.1.1. Description of a statistical ensemble using a density opera-
tor. Consider a statistical ensemble composed of N identical parti-
cles, each described by a normalized wave function
j Uki ðk ¼ 1;2;3; . . .NÞ describing its position in a Hilbert space.
Formally, we may consider each normalized ket as corresponding
a point Uk on the surface C of a unit ‘Hilbert-sphere’.

We would have complete knowledge of the system if we
knew the exact wave function of each particle, that is, if we
knew fjU1i . . . jUNig at all times. Generally we do not know the
exact wave function of every particle; that is, we do not know
the exact location of each ket on C. Instead, we may know the
probability of finding the state of a particle within a surface ele-
ment dS around Uk. Let us denote this probability distribution as
PðUkÞ.

If the system is in some arbitrary state j Uki, the expectation va-
lue of any state-dependent operator cA is

cA
D E

¼ Uk
cA
!!!

!!!Uk

D E
: ð1Þ

Again, since we do not know the exact state j Uki with certainty, we
may consider only the average value of hcAi based on the probabil-
ity distribution of the states j Uki. We denote this with an overbar:

cA
D E

¼
Z

P Ukð Þ Ukh jcA Ukj i dS: ð2Þ

The average is an ensemble average; that is, the average of the
values measured for each member of the ensemble at a given
point in time. Due to ergodicity, the ensemble average may be re-
placed by a time average, where all members of the ensemble are
identical. Note that Eq. (2) accounts for two independent sources
of uncertainty by introducing two corresponding averages. First,
there is the quantum mechanical uncertainty inherent in the mea-
surement process, leading to an expectation value of a given
operator even when the state of a particle is perfectly well known
(i.e. a pure state). We denote the associated average by the ‘h i’.
Second, there is the statistical uncertainty that prevents us from
knowing exactly which state each particle is in when the mea-
surement is taken. This is equivalent to an ensemble average
(or time average for ergodic systems), which we denote with
the overbar.

Now, we expand Eq. (2) in an n-dimensional orthonormal basis
set consisting of kets fjiig that span the Hilbert space containing
jUki. According to the closure theorem,

Xn

i¼1

j iihij ¼ 1n: ð3Þ

where 1n is the n( n identity matrix. Applying the closure theorem
twice, we have

cAjUki ¼
Xn

i¼1
j iihij

 !
cA

Xn

j¼1
jjihjj

 !

jUki ¼
Xn

i;j¼1
ij i ih jcA jj i jh jUki: ð4Þ

so

Ukh jcA Ukj i ¼
Xn

i;j¼1
Ukh ij i ih jcA jj i jh jUki: ð5Þ

Since hijcAjji; hUk j ii; hj j Uki are all scalars, we may rearrange the
terms in Eq. (5):

Ukh jcA Ukj i ¼
Xn

i;j¼1
ih jcA jj i jh jUki Ukh ij i: ð6Þ

Eq. (2) may then be rewritten as

cA
D E

¼
Xn

i;j

ih jcA jj i jh j
Z

P Ukð Þ Ukj i Ukjih idS: ð7Þ
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Eq. (7) defines the density (i.e. probability density) operator q̂,
which has extensive applications in quantum mechanics:

q̂ ¼
Z

P Ukð Þ Ukj i Ukh jdS: ð8Þ

2.1.1.2. Selected properties and applications. Property 1 – Operation
on j Umi. Notice that the operation of the density operator on a
state j Umi is to scale each state j Uki by the projection of j Umi onto
that state (i.e. by hUk j Umi), and to add each of these scaled kets,
weighted by the probability of being in each state j Uki (the
integral extends over every possible state, i.e. over the entire
C-surface):

q̂ Umj i ¼
Z

P Ukð ÞhUk j Umi Ukj idS: ð9Þ

Property 2 – Hermiticity:
Since the probability PðUkÞ is real, the density operator is

Hermitian:

q̂y ¼
Z

P Ukð Þ Ukj i Ukh jdS
" #y

¼
Z

P# Ukð Þ Ukh jy Ukj iydS ¼ q̂: ð10Þ

Application 1 – Expectation values:
Inserting Eq. (8) in Eq. (7), we have

cA
D E

¼
Xn

i;j

ih jcA jj i jh jq̂ ij i; ð11Þ

which, using the closure theorem (Eq. (3)) once more, can be writ-
ten as

cA
D E

¼
Xn

i

ih jcAq̂ ij i; ð12Þ

which is the trace of the matrix Aq:

cA
D E

¼ TrðAqÞ: ð13Þ

Definition 1 – Populations:
The diagonal elements of the density matrix

qii ¼ ih jq̂ ij i ¼
Z

P Ukð Þ ijUkh ij j2dS; ð14Þ

are real, and may be regarded as the average probability of finding
upon measurement that the system is in the state j ii. For this rea-
son, the diagonal element qii is referred to as the population of state
j ii. Notice that from the expectation value of the identity operator,
i.e. A ¼ 1, we deduce from Eq. (13) that the trace of the density ma-
trix is equal to unity, which befits probabilities.

TrðqÞ ¼ 1: ð15Þ

Definition 2 – Coherences:
The off-diagonal elements

qij ¼ ih jq̂ jj i ¼
Z

P Ukð Þ i Ukjh i Ukjjh idS; ð16Þ

in contrast to the diagonal elements, represent averages of com-
plex numbers. Nonzero elements ðqijÞ indicate that, on average,
the correlation is non-vanishing between the two states, j ii and
j ji. For this reason, off-diagonal elements are referred to as
coherences.

Application 2: Partial traces
Finally, we make note of the concept of partial traces. For two

non-interacting subsystems a and b with corresponding density
operators q̂ðaÞ (acting in a Hilbert space of dimension m) and q̂ðbÞ
(acting in a Hilbert space of dimension n), respectively, the global

system aþ b is described by a density operator q̂ðabÞ given by the
direct (tensorial) product of the two constituent subsystems:

q̂ðabÞ ¼ q̂ðaÞ ) q̂ðbÞ: ð17Þ

The global operator acts in an m( n-dimensional direct product
space spanned by the complete set of tensorial products
fj iðaÞi) j iðbÞig of the m basis kets fj iðaÞig (of the space in which
q̂ðaÞ acts) and the n basis kets fj iðbÞig (of the space in which q̂ðbÞ
acts). The (total) trace of this operator is given by [19]:

Tr q̂ðabÞ
$ %

¼
X

iðaÞ

X

iðbÞ
iðbÞ
D !!!) iðaÞ

D !!!
& '

q̂ðabÞ iðaÞ
!!!
E
) iðbÞ
!!!
E& '

: ð18Þ

The matrix elements of the substituent density operator q̂ðaÞ (with
an analogous equation for q̂ðbÞ) are given by

qðaÞij ¼ iðaÞ
D !!!q̂ðaÞ jðaÞ

!!!
E
¼
X

iðbÞ
iðbÞ
D !!!) iðaÞ

D !!!
& '

q̂ðabÞ jðaÞ
!!!
E
) iðbÞ
!!!
E& '

: ð19Þ

In analogy to Eq. (18), this operation is referred to as the partial
trace over b, Trbð. . .Þ, and enables us to compute from q̂ðabÞ the den-
sity matrix q̂ðaÞ describing the statistical properties of measure-
ments bearing on system a alone (and analogously for system b).
That is,

Trb q̂ðabÞ
$ %

¼ q̂ðaÞ; Tra q̂ðabÞ
$ %

¼ q̂ðbÞ: ð20Þ

In this article, we concern ourselves with only a narrow subset
of possible density operator applications. Extensive treatments of
the density operator and additional applications may be found
elsewhere [19–23]. The key concept to bear in mind is that the
density operator contains all quantum mechanical and statistical
information necessary to completely describe a general statistical
ensemble of particles.

2.1.2. Time evolution
For the problem of nuclear spin relaxation, we are interested in

the time evolution of the populations and coherence in an ensem-
ble of spins. We therefore seek to derive and solve an equation of
motion for the density operator.

The time evolution of a particle in state j Uki under the influ-
ence of a Hamiltonian cH is given by the Schrödinger equation:

!h
@

@t
Ukj i ¼ &icH Ukj i; ð21Þ

and therefore, for the bra (adjoint) the corresponding equation is:

!h
@

@t
Ukh j ¼ i Ukh jcHy ¼ i Ukh jcH; ð22Þ

since the Hamiltonian is Hermitian, cHy ¼ cH.
For the time evolution of the density operator, we may consider

only the time-dependent part, and employing Eqs. (21) and (22)

!h
@

@t
q̂ ¼ !h

@

dt
Ukj i Ukh jð Þ ¼ !h

@

dt
Ukj i Ukh j þ Ukj i

@

dt
Ukh j

" #

¼ &icH Ukj i Ukh j þ i Ukj i Ukh jcH ¼ &i cHq̂& q̂cH
& '

¼ &i cH; q̂
h i

:

ð23Þ

Writing the Hamiltonian in units of !h (so-called Planck or Dirac
units), we may write simply

@

@t
q̂ ¼ &i½cH; q̂+; ð24Þ

which is known as the Liouville–von Neumann equation.
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Notice that if we expand the density operator in an eigenbasis
fj jig consisting of eigenstates of a time independent (i.e. static)
Hamiltonian

cHjji ¼ Ejjji; ð25Þ

(given the use of Dirac units, Ej are angular frequencies), we obtain
from Eq. (24) by employing closure

@

@t
qjk ¼ jh j iq̂cH & icHq̂

& '
kj i

¼ i
X

l

jh jq̂ lj i lh jcH kj i & i
X

m

jh jcH mj i mh jq̂ kj i; ð26Þ

since hjjcHjki ¼ hjjkiEk ¼ djkEk, where djk is the Kronecker delta
(djk ¼ 1 for j ¼ k, and djk ¼ 0 otherwise),

@

@t
qjk ¼ iðEk & EjÞqjk: ð27Þ

Thus, under the effect of a time-independent Hamiltonian, the pop-
ulations ðj ¼ kÞ are constant, while the coherences ðj– kÞ oscillate
at the Bohr frequencies (i.e. Ek & Ej) of the system.

2.1.3. Product operators: a useful basis set for the density operator
It is often more useful to describe the density operator in a basis

of orthonormal spin-operators (that describe experimentally mea-
surable variables) rather than an eigenbasis of the Hamiltonian in
Hilbert space as described in the previous section. This basis repre-
sents a ket vector in Liouville space. The so-called product opera-
tors [2,24,25] comprise a suitable operator basis used in the NMR
literature.

The product operator formalism is a very compact and intuitive
way to describe the evolution of the density operator. Only the
deviations of the density operator from identity are considered.
This focuses the discussion on the polarization, the part of the den-
sity operator that is manipulated and observed. The influence of
the identity operator on steady-states has been discussed at length
elsewhere [26–29].

For systems with two or more spins, describing the evolution
using spin operators to treat spin systems independently is a valid
approach since most systems treated in NMR are weakly coupled.
This approach, valid in the weak coupling regime, is called product
operator formalism. Product operator formalisms for strongly cou-
pled spins have been described [30].

The density operator can be represented as a linear combination
of a set of basis operators f bBkg in Liouville space (as opposed to
Hilbert space in the previous section);

q̂ðtÞ ¼
XK

k¼1

bkðtÞ bBk; ð28Þ

where the coefficients bkðtÞ are time dependent complex numbers
and K is the dimension of the Liouville space; the dimension of
the Liouville space for N spin-1/2 nuclei is K ¼ 22N , where the corre-
sponding Hilbert space is 2N-dimensional.

Following Eq. (13), the expectation value of an operator cA can
be written as;

cAðtÞ
D E

¼ Trfq̂ðtÞcAg ¼
XK

k¼1

bkðtÞTrf bBk
cAg: ð29Þ

The beauty of Eq. (29) is that the time evolution of the den-
sity operator and the expectation value of any operator can be

found by limited trace operations. The basis operators are nor-
malized as

Trf bBk bB lg ¼ dkl2
N&2 ð30Þ

where dkl is the Kronecker delta. The time evolution of the density
operator under the effect of a specific time-independent Hamilto-
nian cH can be described from the integration of Eq. (24) as a rota-
tion of the initial density operator q̂0 ¼ q̂ð0Þ to a new operator
q̂t ¼ q̂ðtÞ; this rotation occurs in ‘spin-space’ as opposed to ‘real-
space’ (compare to the interaction representation of Section 2.2.2
and Appendix A.3):

q̂t ¼ e&ibHtq̂0ei
bHt: ð31Þ

The most practical basis operators to represent the density
operator are the angular-momentum operators, Ix;Iy and Iz

(for simplicity we drop the ‘hat’ from the product operators).
For a single-spin (spin-1/2) system, two basis sets can be used:
f1;Ix;Iy;Izg and fIa;Ib;Iþ;I&g. These basis sets are related
by:

Iz ¼
1
2
ðIa &IbÞ;

Iy ¼
1
2i
ðIþ &I&Þ; ð32Þ

Ix ¼
1
2
ðIþ þI&Þ;

1 ¼ 1
2
ðIa þIbÞ: ð33Þ

For one spin-1/2 system with two eigenstates, j ai; m ¼ þ 1
2

$ %

and j bi; m ¼ & 1
2

$ %
, the basis operators can be represented as:

Ia ¼ aj i ah j;
Ib ¼ bj i bh j;
Iþ ¼ aj i bh j; ð34Þ
I& ¼ bj i ah j;

and

Iþ bj i ¼ aj i bjbh i ¼ aj i;
I& aj i ¼ bj i ajah i ¼ bj i: ð35Þ

The usefulness of product operators becomes evident when a
weakly-coupled system of two spin-1/2 nuclei is considered. This
system has four eigenstates, j aai, j abi; j bai, j bbi. There are four
population terms in single-element operator basis, there are eight
single-quantum transitions where the state of one spin is unaf-
fected while the state of the other spin changes; two double-quan-
tum transitions where both spins change spin states in the same
sense; and two zero-quantum transitions where both spins change
their state in an opposite sense. Instead of manipulating sixteen
matrix elements to describe the evolution of the density operator
one can use sixteen simple product operators. The evolution of
the spin system in a typical NMR experiment is often limited to a
smaller subspace spanned by a few of these product operators.
The product operator basis is therefore much more practical.

The sixteen cartesian product operator terms for a two-spin sys-
tem are

1
2 1 Ix Iy Iz Sx Sy Sz

2IxSz 2IySz 2IzSz 2IzSx 2IzSy

2IxSx 2IySy 2IxSy 2IySx
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The use of product operators becomes even more favorable for
larger spin-systems.

2.2. The master equation of relaxation

2.2.1. The Hamiltonian
Description of the time-evolution of the spin ensemble is gi-

ven by the Liouville–von Neumann equation (Eq. (24)). In order
to use this equation to describe the trajectory of the density
operator during an NMR experiment, we have to first define
the Hamiltonian of the system during the experiment. Then we
solve for the density operator q̂ at any given time t as it evolves
under the influence of this Hamiltonian. The Hamiltonian of a
spin system during a generic NMR experiment may be defined
as:

cHðtÞ ¼ cH0 þ cH1ðtÞ þ cHRFðtÞ; ð36Þ

in the laboratory frame, where cH0 is the main time-independent
static Hamiltonian describing the Zeeman interaction of the spins
with the external field B

*

0, cHRFðtÞ represents the interaction with
time-dependent radio frequency fields, and cH1ðtÞ is the Hamilto-
nian for the various interactions leading to relaxation:

cH1ðtÞ ¼
X

l

cHlðtÞ: ð37Þ

The index l denotes the various spin interactions, e.g. dipolar cou-
pling (DD), chemical shift anisotropy (CSA), etc. The magnitude of
cH0 is much larger than that of cH1ðtÞ for the external field used
in normal NMR experiments. In this case, B

*

0 defines the axes of
quantization and cH1ðtÞ is taken to be a perturbation to the main
Zeeman interaction.

In the laboratory frame, cH1ðtÞ is a stationary random function
of time with zero average. If cH1ðtÞ does not have a vanishing aver-
age – i.e. it has some constant offset – then the non-zero, constant
part can be added to a redefined static Hamiltonian cH0. The pre-
cise form of cH1ðtÞ will be discussed in Section 3.

2.2.2. The interaction representation and frame transformation
For a system evolving in the absence of RF fields i.e. HRFðtÞ ¼ 0,

the Liouville–von Neumann equation (Eq. (24)) becomes

@q̂
@t
¼ &i cHðtÞ; q̂

h i
¼ &i cH0 þ cH1ðtÞ; q̂

h i
: ð38Þ

Solving Eq. (38) is simplified by transforming from this Schrö-
dinger representation to the interaction representation, which
corresponds to a change of reference frames in classical mechan-
ics. The interaction representation or interaction ‘picture’, some-
times referred to as the Dirac picture, is an intermediate
between the Schrödinger and Heisenberg representations in
quantum mechanics [31]. In the Schrödinger picture, operators
are assumed to be constant while the wavefunction’s state vector
evolves with time, whereas in the Heisenberg picture, state vec-
tors are assumed to be constant and it is the operators that carry
time dependence. In the interaction picture, the state vectors and
the operators each carry part of the time dependence of
observables.

For a static Hamiltonian cH0 that contains only the Zeeman
interactions, with B

*

0, the interaction frame is equivalent to one
rotating relative to the laboratory frame such that the effects
of the static Hamiltonian cH0 appear to vanish. When
cHRFðtÞ – 0, during an RF pulse, one may first transform to a
rotating frame, so as to make cHRFðtÞ time-independent. If the
RF field is applied on resonance (i.e. xRF ¼ x0), the rotating

frame coincides with the interaction frame. The interaction rep-
resentation moves the time dependence of the state vector due
to cH0 onto the operator cH1ðtÞ, and thus singles-out the effect
of the perturbation cH1ðtÞ.

Transformation to the interaction frame is done by transform-
ing all operators appropriately (see Appendix A.4). Specifically,
any arbitrary operator expressed as bQ in the laboratory frame,
where bQ – cH0, is given in the interaction representation as

bQ ! ebQðtÞ ¼ eibH0t bQ e&ibH0t : ð39Þ

Note that since cH0 is Hermitian, bU ¼ eibH0t is a unitary operator. As
mentioned above, operators that have no time dependence in the
lab (Schrödinger) frame, may become time dependent in the inter-
action frame (as should be expected physically since the interaction
frame rotates in the lab frame).

In the interaction representation, Eq. (38) transforms to

@

@t
~̂qðtÞ ¼ &i fcH1ðtÞ; ~̂qðtÞ

( )
: ð40Þ

Eq. (40), which represents the Liouville–von Neumann equation in
the interaction frame, is derived explicitly in Appendix A.

2.2.3. Derivation of the master equation
2.2.3.1. Solution to the Liouville–von Neumann equation. Eq. (40) is
solved by grouping like terms and integrating:

d ~̂qðtÞ ¼ &i fcH1ðtÞ; ~̂qðtÞ
( )

dt;

~̂qðtÞ ¼ ~̂qð0Þ & i
Z t

0

fcH1ðt0Þ; ~̂qðt0Þ
( )

dt0:
ð41Þ

This expression for the density matrix is ‘recursive’ in the sense that
the ~̂qðt0Þ term in the commutator is defined by the formula for ~̂qðtÞ,
of which ~̂qðt0Þ itself is a part. In other words, we may write ~̂qðt0Þ as a
function of ~̂qðt00Þ, which is a function of ~̂qðt000Þ, and so on. Thus, we
may expand ~̂qðtÞ as

~̂qðtÞ ¼ ~̂qð0Þ &
Z t

0

fcH1ðt0Þ; ~̂qð0Þ & i
Z t0

0

fcH1ðt00Þ; ~̂qðt00Þ
( )

dt00
" #

dt0;

~̂qðtÞ ¼ ~̂qð0Þ & i
Z t

0

fcH1ðt0Þ; ~̂qð0Þ
( )

dt0 &
Z t

0
dt0

(
Z t0

0

fcH1ðt0Þ;
fcH1ðt00Þ; ~̂qð0Þ

( )( )
dt00 þ . . . ð42Þ

where we have explicitly written terms up to second order. We may
ask, at what order might we truncate the expansion such that our
calculations are still acceptably accurate? We consider a short time
t ¼ Dt, during which the density matrix does not evolve signifi-
cantly from its t ¼ 0 value (i.e. that ~̂qðtÞ , ~̂qð0Þ), and in that case,
terms higher than second order have negligible contribution (this
approach thus qualifies as time-dependent, second order perturba-
tion theory). In the discussion below, we will examine the scope of
validity of this second-order approximation. Skinner et al. [3,4] have
treated the problem of the relaxation of a two-state system, consid-
ering terms up to fourth order in cH1ðtÞ.

Taking the time derivative of Eq. (42) truncated to second order
yields:

@ ~̂qðtÞ
@t

¼ &i fcH1ðtÞ; ~̂qð0Þ
( )

&
Z t

0

fcH1ðtÞ;
fcH1ðt0Þ; ~̂qð0Þ

( )( )
dt0: ð43Þ
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2.2.3.2. Ensemble averaging and correlation. Eq. (43) is accurate for
an infinitesimally small system. In a large sample, however, remote
regions of the ensemble relax independently due to the random
nature of cH1ðtÞ. Since cH1ðtÞ is a random operator, different re-
gions do not in fact evolve under ‘identical’ Hamiltonians. As a re-
sult, even if all regions have identical ~̂qð0Þ, for times t > 0, each
part of the sample will have a different, randomly-determined
~̂qðtÞ. To describe the macroscopic sample as a whole, we take the
ensemble average over all terms, which we denote with an
overbar:

@ ~̂qðtÞ
@t

¼ &i fcH1ðtÞ; ~̂qð0Þ
( )

&
Z t

0

fcH1ðtÞ;
fcH1ðt0Þ; ~̂qð0Þ

( )( )
dt0: ð44Þ

Note that for an ensemble-averaged density matrix, the off-
diagonal matrix elements ðj– kÞ in Eq. (27) – i.e. the coherences –
average to zero at equilibrium, which is consistent with the phe-
nomenological description given at the beginning of the article,
describing complete precessional dephasing at equilibrium. On
the other hand, the diagonal elements ðj ¼ kÞ in Eq. (27) – i.e. the
state populations – are unchanged during ensemble averaging. As
described, upon perturbation by an RF pulse, the coherences be-
come non-zero, and the populations change, with those matrix ele-
ments corresponding to the higher-energy states increasing in
magnitude. In terms of the averaged density matrix, relaxation
may then be viewed as the process whereby the off-diagonal ma-
trix elements vanish (precessional phase coherence is lost) and
the diagonal elements are restored to their equilibrium values,
thus indicating the restoration of energy state populations and
the equilibrium bulk longitudinal magnetization.

Assuming ergodicity, the instantaneous ensemble average of
the Hamiltonian cH1ðtÞ is equal to its time average, which as noted

above is zero. This assumes that fcH1ðtÞ ~̂qð0Þ ¼
fcH1ðtÞ ~̂qð0Þ; that is,

that averaging over the Hamiltonian and density operator may
be done separately. We show this to be true presently in our con-
sideration of the second-order term. Thus, the first term on the
right-hand side of Eq. (44) vanishes and we have:

@ ~̂qðtÞ
@t

¼ &
Z t

0

fcH1ðtÞ;
fcH1ðt0Þ; ~̂qð0Þ

( )( )
dt0: ð45Þ

Writing the integrand explicitly gives

fcH1 tð Þ; fcH1 t0ð Þ; ~̂q 0ð Þ
( )( )

¼fcH1 tð Þ fcH1 t0ð Þ; ~̂q 0ð Þ
( )

& fcH1 t0ð Þ; ~̂q 0ð Þ
( )

fcH1 tð Þ

¼fcH1 tð ÞfcH1 t0ð Þ ~̂q 0ð Þ&fcH1 tð Þ ~̂q 0ð ÞfcH1 t0ð Þ&fcH1 t0ð Þ ~̂q 0ð ÞfcH1 tð Þþ ~̂q 0ð ÞfcH1 t0ð ÞfcH1 tð Þ

¼fcH1 tð ÞfcH1 t0ð Þ ~̂q 0ð Þ&fcH1 tð Þ ~̂q 0ð ÞfcH1 t0ð Þ&fcH1 t0ð Þ ~̂q 0ð ÞfcH1 tð Þþ ~̂q 0ð ÞfcH1 t0ð ÞfcH1 tð Þ

¼fcH1 tð ÞfcH y
1 tþsð Þ ~̂q 0ð Þ&fcH1 tð Þ ~̂q 0ð ÞfcH y

1 tþsð Þ

&fcH y
1 tþsð Þ ~̂q 0ð ÞfcH1 tð Þþ ~̂q 0ð ÞfcH y

1 tþsð ÞfcH1 tð Þ;

ð46Þ

where on the last line we have made use of the fact that all Hamil-
tonians are Hermitian, cHðtÞ ¼ cHyðtÞ, and introduced the variable
s ¼ t0 & t. We have written Eq. (46) as such to emphasize that each
ensemble average is actually a correlation function (see Appendix
C): the correlation of the Hamiltonian with itself over time s on
the one hand, and that between the Hamiltonian and the density

operator over time t (or t þ s) on the other hand (there is in princi-
ple a correlation between the initial value of the density matrix and
the Hamiltonian since ~̂qð0Þ depends on the behavior of cHðtÞ before
t ¼ 0).

The correlation of the Hamiltonian with itself is significant for s
on the order of sc (the auto-correlation time of the Hamiltonian) or
smaller. Similarly, the correlation between the Hamiltonians and
~̂qð0Þ is negligible for t - sc . Assuming t - sc , we may average over
~̂qð0Þ and fcHðtÞfcHðt þ sÞ separately in Eq. (45), since if there is no
correlation between these two functions, the ensemble average
of the products will be equal to the product of the ensemble aver-
ages. This leads to:

d ~̂qðtÞ
@t

¼ &
Z 1

0

fcH1 tð Þ; fcH1 t þ sð Þ; ~̂q tð Þ
( )( )

ds: ð47Þ

2.2.3.3. Approximations and limits of validity. Given that averaging
over the Hamiltonians and density operator may be done sepa-
rately, and based on our assumption that t ¼ Dt is small enough
that the evolution of the density operator is infinitesimal, we
may replace ~̂qð0Þ with ~̂qðtÞ in Eq. (47). The fractional variation of
the density operator is approximately

~̂qðtÞ & ~̂qð0Þ
***

***
~̂qð0Þ
***

***
, t

~̂qð0Þ
***

***

d ~̂qðtÞ
dt

*****

***** , t
Z t

0

fcH1ðtÞ
fcH1ðt þ sÞ ds

****

****

ð48Þ

where k . . . k indicates the magnitude of an operator, which is often
measured by the norm. The norm of an operatorcA is defined as the
square root of the absolute value of the largest-magnitude eigen-
value of cAycA; for a Hermitian operator cAH such as a Hamiltonian,
this is simply the largest absolute value of an eigenvalue of cAH . The
trace may similarly be used as a measure of operator ‘strength’,
inasmuch as the trace is frame-independent, and clearly represents
the sum of eigenvalues in a representation where the operator is
diagonal. Since values of the correlation function for which s- sc
contribute negligibly to the integral, we can justifiably write

~̂qðtÞ & ~̂qð0Þ
***

***
~̂qð0Þ
***

***
, t cH1ðtÞ

***
***
2
sc: ð49Þ

If the fractional increase is small (i.e. tkcH1ðtÞk2 sc . 1) in addition
to the condition t - sc being satisfied, then the errors introduced in
replacing ~̂qð0Þ with ~̂qðtÞ in Eq. (47) are negligible.

Another result of the requirement that t - sc is that wemay ex-
tend the upper limit of integration in Eq. (47) to infinity. As men-

tioned above, for values of s > sc , the correlation fcH1ðtÞ
fcH1ðt þ sÞ

decays rapidly to zero, and thus the contribution to the integral in
Eq. (47) at these values of s is also minuscule. Therefore, extending
the upper limit to infinity does not significantly affect the value of
the definite integral. Note, however, that while we assume t to be
large enough to extend the limits of integration (since it is orders
of magnitude larger than sc), it must still be small enough that our
original assumption ~̂qðtÞ , ~̂qð0Þ holds as discussed above. Since we
are considering t - sc , ~̂qðtÞ for individual spins comprising the

ensemble would have evolved under the influence of fcH1ðtÞ over

several cycles. This leads to an averaging of the influence of fcH1ðtÞ
on ~̂qðtÞ for individual members of the ensemble resulting in essen-
tially the same ~̂qðtÞ for each member. Therefore we can replace
~̂qðtÞwith ~̂qðtÞ since the individual density operators for each mem-
ber of the ensemble is approximately the same.
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We now have

@ ~̂qðtÞ
@t

¼ &
Z 1

0

fcH1ðtÞ;
fcH1ðt þ sÞ; ~̂qðtÞ

( )( )
ds; ð50Þ

which is known as the master equation of relaxation.
Now we consider more closely our assumption that terms be-

yond second order may be neglected in our expansion of Eq.
(42). This proves to be a useful exercise because it illuminates a
relationship between the strength of the Hamiltonians that lead
to relaxation and their associated correlation times. Retaining
terms beyond second order, Eq. (44) can be written as

d ~̂qðtÞ
dt

¼
X1

n¼1
An; ð51Þ

where

A1 ¼ &i
fcH1ðtÞ; ~̂qð0Þ

( )
;

An ¼ &i
Z t

0

fcH1ðtÞ;An&1ðt0Þ
( )

dt0:

ð52Þ

Successive terms contain increasing factors of the Hamiltonian and
additional integrals, and thus the relative strengths of successive
terms is

Ank k
An&1k k

,
Z t

0

cH1ðtÞ ds
****

**** ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cH1ðtÞ
***

***
2
s2c

s

: ð53Þ

which must be very small for our second-order truncation to be per-

missible,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kcH1ðtÞk2s2c

q
. 1, and this requirement is satisfied for

short sc .
Most biomolecular systems currently studied in NMR are con-

stituted by ensembles of spin-1/2 (1H, 13C, 15N and 31P) and have
molecular masses below 100 kDa (sc < 50 ns) so that the require-
ment for short sc is never a problem. However, we should inspect if
this condition holds for one of the most challenging systems that
has been studied by liquid-state NMR so far. The strongest dipolar
interaction in a biomolecule arises between two protons in a
methyl group. These two protons are separated by about 1.8 Å.
The amplitude of the dipolar Hamiltonian, scaled by 0.5 due to
the rapid methyl rotation, is:

H1k k , 6:5( 104 s&1: ð54Þ

For example, for [13C, 1H] correlations observed in solution for
the protease ClpP at 5 "C [32], sc is about 500 ns ð5( 10&7 sÞ. Thus,

H1k ksc , 3:25( 10&2 . 1; ð55Þ

which agrees with the above requirement.

2.2.3.4. Correction for finite bath temperature. The preceding discus-
sion considers a density matrix that describes only the spins, there-
by ignoring the bath and the coupling between the spins and
lattice. As a result, the master equation (Eq. (50)) predicts an equal
distribution of the spins among all energy states at equilibrium,
and thereby implies an infinite lattice temperature, which is clearly
not physically accurate. To take into account the finite lattice tem-
perature TL, we make the following replacement

~̂qðtÞ ! ~̂qcðt; TLÞ ¼ ~̂qðtÞ & ~̂qeqðTLÞ; ð56Þ

where q̂eqðTLÞ is the thermal equilibrium value of the density oper-
ator, determined by the Boltzmann distribution:

~̂qeqðTLÞ ¼ q̂eqðTLÞ ¼
e&bH0=kBTL

Tr e&bH0=kBTL
& ' ; ð57Þ

where kB is the Boltzmann constant. This is a purely phenomenolog-
ical, ad hoc correction, but it may be confirmed by a rigorous quan-
tum mechanical treatment [1,9,10,33]. Such an approach considers
a total Hamiltonian

cH ¼ cH0;S þ cH0;L þ cH1;SL; ð58Þ

where cH0;S and cH0;L represent the unperturbed Hamiltonians of
the spin system and the lattice, respectively, and cH1;SL represents
the coupling between them. Assuming that the thermal equilibrium
of the lattice is not significantly altered by spin transitions (weak
coupling between spin and lattice i.e. Ĥ1;SL is small), then its state
may be described by the density operator

q̂ðLÞ ¼ e&bH0;L=kBTL

Tr e&bH0;L=kBTL
& ' ; ð59Þ

and the total density matrix of the spins and lattice is then written
as the direct product

q̂ðLSÞ ¼ q̂ðLÞ ) q̂ðSÞ; ð60Þ

where q̂ðSÞ ¼ q̂ is the density operator for the spin system. One then
proceeds in a manner analogous to that of the preceding semiclas-
sical derivation, considering the evolution of q̂ðSÞ in an interaction
representation by employing partial traces as described in Sec-
tion 2.1.1.2 (the mathematics are by necessity significantly more in-
volved). For the case of high temperatures (i.e. large TL), which is
clearly assumed for spins in the solution state, one eventually ob-
tains in place of Eq. (50):

@ ~̂qðt; TLÞ
@t

¼ &
Z 1

0

fcH1ðtÞ;
fcH1ðt þ sÞ; ~̂qðtÞ & ~̂qeqðTLÞ

( )( )
ds; ð61Þ

thus validating our ad hoc correction of Eq. (56).

2.2.4. Summary of semiclassical relaxation theory
The master equation of relaxation is given by

@

@t
~̂qðt; TLÞ ¼ &

Z 1

0

fcH1ðtÞ;
fcH1ðt þ sÞ; ~̂qcðt; TLÞ

( )( )
ds; ð62Þ

where:

/ The overbar denotes an ensemble average. Averaging of the
Hamiltonian and the density operator are done separately.

/ Truncation of the expansion of Eq. (42) at second order requires

that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kcH1ðtÞk2

q
s2c . 1.

/ t must be short enough so that the evolution of ~̂q is negligible,
but long as compared to the correlation time. In conjunction
with the preceding requirement, this implies that the master
equation is valid provided that

sc . t . cH1ðtÞ
***

***
2
sc

( )&1
: ð63Þ

/ The replacement ~̂qðtÞ ! ~̂qcðt; TLÞ ¼ ~̂qðtÞ & ~̂qeqðTLÞ is an ad hoc
correction made to account for the finite lattice temperature,
which may be rigorously justified through quantummechanical
treatment of the entire system of bath and spins.

Physically, Eq. (63) implies that under the present framework
we may not seek information for timescales on the order of sc or
shorter, and thus the master equation is only useful for situations
in which the relaxation times T1 and T2 are much longer that the
correlation times sc of the processes leading to relaxation (the pro-
cesses represented by cH1ðtÞ). This makes semi-classical relaxation
theory especially well suited to the treatment of spins in the solu-
tion state.
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2.3. Redfield theory: the master equation in matrix form

2.3.1. Expansion in an eigenbasis
We now transcribe Eq. (50) into matrix form. Let jai denote one

of a set of eigenstates of the unperturbed Hamiltonian cH0, with
corresponding eigenvalue (i.e. energy, which takes the form of an
angular frequency since we use Dirac units) Ea, not to be confused
with the spin eigenstate of the Zeeman term. This is the represen-
tation of the master equation in Hilbert Space. The complete set of
eigenstates fjaig forms a suitable eigenbasis in which to express
@ ~̂qðtÞ=@t. Using Eq. (46) as a guide, we may express each matrix
element of the integrand of Eq. (50) as

ah j fcH1 tð Þ fcH1 t þ sð Þ; ~̂q tð Þ
( )( )

a0j i

¼ ah jfcH1 tð ÞfcH1 t þ sð Þ ~̂q tð Þ a0j i

þ ah j ~̂q tð ÞfcH1 t þ sð ÞfcH1 tð Þ a0j i

& ah jfcH1 tð Þ ~̂q tð ÞfcH1 t þ sð Þ a0j i

& ah jfcH1 t þ sð Þ ~̂q tð ÞfcH1 tð Þ a0j i; ð64Þ

and through repeated application of the closure theorem (Eq. (3))
we may rewrite this expression as

ah j fcH1 tð Þ fcH1 t þ sð Þ; ~̂q tð Þ
( )( )

a0j i

¼
X

b;b0

X

k

ah jfcH1 tð Þ kj i kh jfcH1 t þ sð Þ bj i bh j ~̂q tð Þ b0j i b0ja0h i

þ
X

b;b0

X

k

a bj ih bh j ~̂q tð Þ b0j i b0h jfcH1 t þ sð Þ kj i kh jfcH1 tð Þ a0j i

&
X

b;b0
ah jfcH1 tð Þ bj i bh j ~̂q tð Þ b0j i b0h jfcH1 t þ sð Þ a0j i

&
X

b;b0
ah jfcH1 t þ sð Þ bj i bh j ~̂q tð Þ b0j i b0h jfcH1 tð Þ a0j i; ð65Þ

where the summations extend over all eigenstates of cH0.

Next, writing the matrix fcH1ðtÞ as a function of the Hamiltoni-
ans in the laboratory frame, cH0 and cH1ðtÞ (see Eq. (39)), and
employing closure, we see that terms of the form hajfcH1ðtÞjbi
may be written as

ah jfcH1 tð Þ bj i ¼ ah jeibH0tcH1 tð Þe&ibH0t bj i

¼
X

k;k0
ah jeibH0t kj i kh jcH1 tð Þ k0j i k0h je&ibH0t bj i: ð66Þ

Recognizing (see Appendix A.1, Eq. (A5)) that

e$ibH0t kj i ¼ e$iEkt kj i; ð67Þ

we may simplify Eq. (66) to read

ah jfcH1 tð Þ bj i ¼
X

k;k0
ah jeiEkt kj i kh jcH1 tð Þ k0j i k0h je&iEbt bj i: ð68Þ

Since hajbi ¼ dab (where dab is the Kronecker delta function), the
only non-zero terms in Eq. (68) are those for which k ¼ a and
k0 ¼ b, and thus

ah jfcH1 tð Þ bj i ¼ ah jcH1 tð Þ bj ieiðEa&EbÞt : ð69Þ

Inserting Eq. (69) into Eq. (65) and writing each matrix element
hbj ~̂qðtÞjb0i simply as ~qbb0 ðtÞ we have

ah j fcH1 tð Þ fcH1 tþsð Þ; ~̂q tð Þ
( )( )

a0j i

¼
X

b;b0

X

k

ah jcH1 tð Þ kj i kh jcH1 tþsð Þ bj i ~qbb0 tð Þ b0ja0h i eiðEa&EkÞt eiðEk&EbÞðtþsÞ

þ
X

b;b0

X

k

a bj ih ~qbb0 tð Þ b0h jcH1 tþsð Þ kj i kh jcH1 tð Þ a0j i eiðEb0 &EkÞðtþsÞ eiðEk&Ea0 Þt

&
X

b;b0
ah jcH1 tð Þ bj i ~qbb0 tð Þ b0h jcH1 tþsð Þ a0j i eiðEa&EbÞt eiðEb0 &Ea0 ÞðtþsÞ

&
X

b;b0
ah jcH1 tþsð Þ bj i ~qbb0 tð Þ b0h jcH1 tð Þ a0j i eiðEa&EbÞðtþsÞ eiðEb0 &Ea0 Þt :

ð70Þ

2.3.2. Correlation functions and spectral densities
We now introduce the correlation function Gaba0b0 ðsÞ and the

corresponding spectral density jaba0b0 ðxÞ (see Appendix C), defined
by

Gaba0b0 sð Þ ¼ ah jcH1 tð Þ bj i b0h jcH1 t þ sð Þ a0j i; ð71aÞ

jaba0b0 xð Þ ¼
Z 1

0
Gaba0b0 sð Þe&ixsds: ð71bÞ

Since terms of the form hajAjbi in Eq. (70) are scalars we may
rearrange them freely in the form of correlation functions. More-
over, since the ensemble averaging of the Hamiltonian and the
density operator are done separately, we may write Eq. (62) as

@~qaa0 tð Þ
@t

¼&
X

b;b0

Z 1

0

da0b0
P
k
Gakbk sð Þe&i Eb&Ekð Þsei Ea&Ebð Þt

þdab
P
k
Gka0kb0 sð Þe&i Ek&Eb0ð Þsei Eb0 &Ea0ð Þt

&Gaba0b0 sð Þe&i Ea0 &Eb0ð Þsei Ea&EbþEb0 &Ea0ð Þt

&Gb0a0ba sð Þe&i Eb&Eað Þsei Ea&EbþEb0 &Ea0ð Þt

2

666666664

3

777777775

~qbb0 tð Þds:

ð72Þ

Recognizing that each term in the bracket is composed of a
spectral density multiplied by an exponential,

@~qaa0 tð Þ
@t

¼ &
X

b;b0

da0b0
P
k
jakbk Eb & Ek

$ %
ei Ea&Ebð Þt

þdab
P
k
jka0kb0 Ek & Eb0

$ %
ei Eb0 &Ea0ð Þt

&jaba0b0 Ea0 & Eb0
$ %

ei Ea&EbþEb0 &Ea0ð Þt

&jb0a0ba Eb & Ea
$ %

ei Ea&EbþEb0 &Ea0ð Þt

2

666666664

3

777777775

~qbb0 tð Þ: ð73Þ

Notice that the exponentials in the first two bracketed terms in
Eq. (73) may be replaced by eiðEa&EbþEb0 &Ea0 Þt without significantly
affecting their values. We may therefore write

@~qaa0 tð Þ
@t

¼&
X

b;b0

da0b0
P
k
jakbk Eb&Ek

$ %

þdab
P
k
jka0kb0 Ek&Eb0

$ %

&jaba0b0 Ea0 &Eb0
$ %

&jb0a0ba Eb&Ea
$ %

2

6666664

3

7777775
( ei Ea&EbþEb0 &Ea0ð Þt ~qbb0 tð Þ:

ð74Þ

2.3.3. The dynamic frequency shift
Since cH1ðtÞ is a stationary random operator, from Eq. (C24) (see

Appendix C) we can write the following expression:
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jaba0b0 xð Þ ¼ 1
2
Jaba0b0 xð Þ & iKaba0b0 xð Þ; ð75Þ

where

Jaba0b0 xð Þ ¼
Z 1

&1
Gaba0b0 sð Þe&ixsds; ð76aÞ

Kaba0b0 xð Þ ¼
Z 1

0
Gaba0b0 sð Þ sin xsð Þds: ð76bÞ

are both real functions.
The imaginary term iKaba0b0 ðxÞ in Eq. (75) gives rise to a shift in

resonance frequency known as the dynamic frequency shift [34–36].
This effect is usually small enough to be neglected, although for
certain interactions (e.g. quadrupolar) that are comparable in mag-
nitude to the Zeeman interaction cH0, it must be accounted for
[37]. This term will be ignored in the present context. Alterna-
tively, one may take the approach mentioned earlier, redefining
the static Hamiltonian in such a way that the dynamic frequency
shift is included in dH0 . Finally, we may remark that only the real
part of jaba0b0 ðxÞ contributes to the evolution of the spin system to-
wards equilibrium, that is relaxation.

Considering only the real part, we may simply replace
jaba0b0 ðxÞ ! 1

2 Jaba0b0 ðxÞ in Eq. (74).

2.3.4. The Redfield relaxation equation
We now define the rate constants Rab;a0b0 , the elements of the so-

called Redfield relaxation matrix, and rewrite Eq. (74) in an even
more compact notation as the Redfield relaxation equation:

@~qaa0 tð Þ
@t

¼
X

b;b0
Raa0 ;bb0 e

i Ea&EbþEb0 &Ea0ð Þt ~qbb0 tð Þ; ð77Þ

where

Raa0 ;bb0 ¼
1
2

Jaba0b0 Ea0 & Eb0
$ %

þ Jb0a0ba Eb & Ea
$ %

& da0b0
P
k
Jakbk Eb & Ek

$ %
& dab

P
k
Jka0kb0 Ek & Eb0

$ %
2

4

3

5:

ð78Þ

Noting as before that the Redfield Eq. (77) implies an
infinite bath temperature, we make the correction, Eq. (56),
~̂qðtÞ ! ~̂qcðt; TLÞ ¼ ~̂qðtÞ & ~̂qeqðTLÞ. Note that the Redfield formulation
makes the implication of infinite temperature somewhat more
clearly than did the operator formalism used in the preceding sec-
tion: because Raa;bb ¼ Rbb;aa (that is, the probability of transition
from j ai to j bi is equal to that of the opposite transition from
j bi to j ai – the principle of detailed balance), the (uncorrected)
Redfield equation clearly describes an equal distribution of spins
among the various energy states at equilibrium.

Finally, we introduce the secular approximation as follows. The
terms in Eq. (77) for which Ea þ Eb0 – Eb þ Ea0 will have rapidly fluc-
tuating values, oscillating at frequencies much greater than the
rate of evolution of the density operator under the terms Raa;bb.
As a result, their contribution will average approximately to zero
in the summation. Therefore, we may neglect such terms, keeping
only the so-called secular terms for which Ea þ Eb0 ¼ Eb þ Ea0 (‘sec-
ular’ is used here in keeping with its Latin origins, referring to a
span of time). In the context of the secular approximation, the
oscillations of the secular terms take place on a secular timescale
as compared to the comparatively-fast fluctuations of the non-sec-
ular terms, which are discarded. The exponential for the secular
terms will always equal unity, and we may then write the secular
approximation of the relaxation equation:

@~qaa0 t; TLð Þ
@t

¼
X

b;b0
Raa0 ;bb0 ~qbb0 t; TLð Þ ð79Þ

Note that the secular approximation may be violated under cer-
tain conditions, typically when the difference of energy of two
eigenstates is not much larger than the relaxation rates [38]. Eq.

(79), which represents the Redfield equation in Hilbert space is
rarely used in the context of calculating spin-relaxation rates. In-
stead the Redfield equation in Liouville space (i.e. in the product
operator basis) is widely used. This formalism will be treated in
Section 6.

3. The Hamiltonians of relaxation

We now present a systematic approach to represent the Hamil-
tonians cHl appearing in Eq. (37), in the derivation of the correla-
tion functions (Eq. (71b)), and ultimately the Redfield Relaxation
matrix in Eq. (79). The method of presentation of the theory in this
part is drawn in large measure from the excellent discussions pro-
vided by Mehring [39] and Smith et al. [40–42].

3.1. General treatment of Hamiltonian operators

3.1.1. Tensor representation of Hamiltonian operators
Any scalar may be written as a scalar (‘dot’) product of vectors

or tensors. Thus, the scalar interaction energies represented by the
various Hamiltonians cHl that comprise cHðtÞ, Eq. (37), may be
written as scalar products, containing terms such as

l
*

i 0 B
*

0 r&3 l
*

i 0 l
*

j

& '

spin—field interaction spin—spin interaction
ð80Þ

As will be discussed below, all the Hamiltonian operators of interest
may be constructed by replacing the classical magnetic dipole mo-

ment with its quantum mechanical equivalent, i.e. replacing l
*
with

c!h bI
*

(or simply c bI
*

when working in units of !h as in the preceding

sections). For simplicity the vector sign is dropped from I
*

.
I ¼ ðIx;Iy;IzÞ is the spin operator for the given nucleus, and c
is the gyromagnetic ratio. We will limit ourselves to the case of
chemical shielding ðcHl ¼ cHCSÞ for spin–field interactions, and to

dipolar coupling ðcHl ¼ cHDDÞ for spin–spin interactions.
Employing scalar products, we may develop a formalism in

which we cast the single spin–external field interaction Hamilto-
nian in the form

cHj
CS ¼ Cj

CS Ij 0 A
_

j 0 B
*

0; ð81Þ

for the jth spin, where Cj
CS is a scalar constant, and A

_
j is a tensor (the

chemical shielding tensor) which we will construct appropriately to
describe the given interaction. Explicitly,

cHj
CS ¼ Cj

CS Ij
x;I

j
y;I

j
z

& '
0

Aj
xx Aj

xy Aj
xz

Aj
yx Aj

yy Aj
yz

Aj
zx Aj

zy Aj
zz

0

BB@

1

CCA 0
B0x

B0y

B0z

0

B@

1

CA: ð82Þ

Similarly, for a spin–spin interaction between the jth and kth spins
we may write the Hamiltonian as

cHjk
DD ¼ Cjk

DD Ij 0 A
_

jk 0Ik; ð83Þ

cHjk
DD ¼ Cjk

DD Ij
x;I

j
y;I

j
z

& '
0

Ajk
xx Ajk

xy Ajk
xz

Ajk
yx Ajk

yy Ajk
yz

Ajk
zx Ajk

zy Ajk
zz

0

BB@

1

CCA 0
Ik

x

Ik
y

Ik
z

0

BB@

1

CCA: ð84Þ

Using a more compact notation we have for the interactions of a
spin with the magnetic field:

cHj
CS ¼ Cj

CS

X

u;v¼fx;y;zg
Ij

u Aj
uv B0v : ð85Þ
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For the spin–spin interactions,

cHjk
DD ¼ Cjk

DD

X

u;v¼fx;y;zg
Ij

u Ajk
uv Ik

v : ð86Þ

We may write Eqs. (85) and (86) somewhat more elegantly as

cHj
CS ¼ Cj

CS A
_
j 1 X

_
j; ð87aÞ

cHjk
DD ¼ Cjk

DD A
_
jk 1 X

_
jk; ð87bÞ

respectively, where1 denotes the scalar products between two ten-
sors, which, in complete analogy with the vector dot product, is de-
fined as

A
_

1X
_

¼
X

u;v¼fx;y;zg
AuvXuv : ð88Þ

In writing the Hamiltonians in Eq. (87) we have simply col-
lected the various terms Ij

uB
0
m and Ij

uI
k
v in Eqs. (85) and (86),

respectively, organizing them in 3( 3 matrices X
_

j and X
_

jk:

X
_

j ¼
Ij

x B0x Ij
x B0y Ij

x B0z

Ij
y B0x Ij

y B0y Ij
y B0z

Ij
z B0x Ij

z B0y Ij
z B0z

0

BB@

1

CCA; ð89aÞ

Xj
uv ¼ Ij

u B0v ;

X
_

jk ¼

Ij
x Ik

x Ij
x Ik

y Ij
x Ik

z

Ij
y Ik

x Ij
y Ik

y Ij
y Ik

z

Ij
z I

k
x Ij

z I
k
y Ij

z I
k
z

0

BB@

1

CCA; ð89bÞ

Xjk
uv ¼ Ij

u Ik
v :

Formally, these matrices represent second-rank tensors formed
from Kronecker (i.e. tensorial or dyadic) products between two
vectors (i.e. first-rank tensors):

X
_

j ¼
Ij

x

Ij
y

Ij
z

0

BB@

1

CCA) B0x; B0y;B0z
$ %

¼ Ij
*

) B
*

0 ð90aÞ

X
_

jk ¼
Ij

x

Ij
y

Ij
z

0

BB@

1

CCA) ðI
k
x ;I

k
y;I

k
yÞ ¼ Ij

*

)Ik
*

ð90bÞ

We emphasize at this point that these manipulations are purely
mathematical, executed for the purpose of elegance. We have
worked with some foresight of our ultimate concern with NMR
relaxation and molecular tumbling. In particular, we will usually
write the Hamiltonians such that all spin interactions are retained
in X

_
, while the spatial dependencies (concerned with molecular

motion leading to the stochastic time-dependence of cH1ðtÞ)
are contained in A

_

.
Both A

_
and X

_
are rank-2 tensors and they can in general be writ-

ten as the sum of three irreducible cartesian tensors of rank-0 (sca-
lar), rank-1 (antisymmetric tensor; aij ¼ &aji) and rank-2
(symmetric tensor; sij ¼ sji).

A
_

¼
Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

2

4

3

5 ¼ Aiso

1 0 0
0 1 0
0 0 1

2

4

3

5þ
0 axy axz
ayx 0 ayz
azx azy 0

2

4

3

5

þ
sxx sxy sxz
syx syy syz
szx szy szz

2

4

3

5; ð91Þ

the ranks of the matrices on the right-hand side are 0, 1 and 2,
respectively, and

Aiso ¼
1
3
ðAxx þ Ayy þ AzzÞ ¼

1
3
TrðAÞ;

auv ¼
1
2
ðAuv & AvuÞ; ð92Þ

suv ¼
1
2
ðAuv þ Avu & 2AisoduvÞ:

The specific elements of the tensors depend on the coordinate
system that is used to express the Hamiltonian. In the principal
axes frame (PAF) of the spatial tensor, A

_

, the rank-2 component
is diagonal, thus the PAF will be used to express A

_

. Depending on
the interaction, the second tensor X

_

contains a dyadic product of
spin operators (suitably normalized) or a spin operator with the
magnetic field. The ultimate goal is to express each Hamiltonian
in the laboratory frame where time dependence comes from the
molecular motions.

The various components of the A
_

(spatial) tensor may be writ-
ten as [13,39,40]:

A0
0 ¼ & 1ffiffi

3
p
& '

ðAxx þ Ayy þ AzzÞ A0
0ðPAFÞ ¼ &

TrfAg
3 ;

A0
1 ¼ & iffiffi

2
p
& '

ðAxy & AyxÞ A0
1ðPAFÞ ¼ 0;

A$11 ¼ & 1
2

$ %
ðAzx & Axz $ iðAzy & AyzÞ A$11 ðPAFÞ ¼ 0;

A0
2 ¼ 1ffiffi

6
p
& '

½3Azz & ðAxx þ Ayy þ AzzÞ+ A0
2ðPAFÞ ¼

ffiffi
3
2

q
Azz & 1

3 TrfAg
, -

;

A$12 ¼ 2 1
2

$ %
½Axz þ Azx $ iðAyz þ AzyÞ+ A$12 ðPAFÞ ¼ 0;

A$22 ¼ 1
2

$ %
½ðAxx & Ayy $ iðAxy þ AyxÞ+ A$22 ðPAFÞ ¼

ffiffi
1
2

q
ðAxx & AyyÞ;

ð93Þ

which we have shown in both cartesian and irreducible spherical
tensor forms.

In the same manner, the X
_

(spin) tensor can be written in spher-
ical coordinates in the laboratory frame:

X0
0ðLABÞ ¼ &

1ffiffiffi
3

p
" #

ðXxx þ Xyy þ XzzÞ;

X0
1ðLABÞ ¼

iffiffiffi
2

p
" #

ðXxy & XyxÞ;

X$11 ðLABÞ ¼
1
2

" #
½Xzx & Xxz $ iðXzy & XyzÞ+;

X0
2ð LABÞ ¼

1ffiffiffi
6

p
" #

½3Xzz & ðXxx þ Xyy þ XzzÞ+;

X$11 ðLABÞ ¼ 2
1
2

" #
½Xxz þ Xzx $ iðXyz þ XzyÞ+;

X$22 ðLABÞ ¼
1
2

" #
½Xxx & Xyy $ iðXxy þ XyxÞ+:

ð94Þ

It is possible to write the spatial tensor A
_

relative to any arbitrary
axes system, (AAF), using the Wigner rotation matrices (see Appen-
dix D.5):

Am
l ðAAFÞ ¼

Xl

m0¼&l

Dl#
m;m0 ðX0ÞAm0

l ðPAFÞ; ð95Þ

where l is the rank, m is the order, and X is the set of Euler angles
defining the orientation of the PAF with respect to an arbitrary axis
frame (AAF).

Since the Hamiltonian is time-dependent in the LAB frame, a
time-dependent rotation must be performed to express A

_

in this
frame:

Am
l ðLABÞ ¼

Xl

m0¼&l

Dl#
m;m0 ½XðtÞ+Am0

l ðAAFÞ: ð96Þ

In spherical coordinates, the scalar product of two tensors can
be written as:
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Al 1 Xl ¼
Xl

m¼&l

ð&1ÞmAm
l X

&m
l ¼

Xl

m¼&l

ð&1ÞmA&ml Xm
l : ð97Þ

Summing over all the components of the rank-2 tensor we have;

A
_

1X
_

¼
X2

l¼0

Al 0 Xl ¼
X2

l¼0

Xl

m¼&l

ð&1ÞmA&ml Xm
l : ð98Þ

Combining Eq. (98) with Eq. (81) and Eq. (83), cHl may be ex-
pressed as

cHl ¼ Cl
X

u

X

v
AuvXuv ;

cHl ¼ Cl A
_

1X
_

; ð99Þ

cHl ¼ Cl
X2

l¼0

Xl

m¼&l

ð&1ÞmA&ml Xm
l :

The tensors A
_

and X
_

have nine distinct components (in general).
Any constant (i.e. a; b) can be factored out from the tensor

terms, so we define from A
_

and X
_

:

Fm
l ¼

1
a
Am
l ;

Tm
l ¼

1
b
Xm

l ;

nl ¼ abCl:

ð100Þ

Thus Eq. (37) may be written as:

cH1ðtÞ ¼
X

l

cHl ¼
X

l
nl
X2

l¼0

Xl

m¼&l

ð&1ÞmF&ml ðtÞTm
l ; ð101Þ

Fm
l ðtÞ are time-dependent components in the LAB frame. They will

be used to derive the correlation functions and the spectral density
function defined in Eq. (71b).

Finally the general form of the Hamiltonian in the LAB frame
becomes:

cHlðLAB;tÞ ¼ n
X2

l¼0

Xl

m¼&l

ð&1ÞmF&ml ðLAB;tÞTm
l ðLABÞ

¼ n
X2

l¼0

Xl

m¼&l

ð&1Þm
Xl

m0¼&l

Dl#
&m;m0 ½XðtÞ+Fm0

l ðAAFÞ

" #

Tm
l ðLABÞ:

ð102Þ

We now apply the general procedure we have just developed to
two specific interactions of interest for relaxation: chemical shield-
ing and dipolar coupling.

3.1.2. The chemical shift Hamiltonian
In the presence of a strong static field the electrons around

the nucleus generate a localized induced magnetic field.
Although this induced field is very small when compared to
the static field, it depends on the orientation of the molecular
orbitals with respect to the static field. The dependence of this
interaction upon the orientation of the molecule in space and
therefore in the static field makes the chemical shift interaction
an important relaxation mechanism. The induced magnetic field
can be written as;

Bi
*

ind ¼ &r
_i 0 B

*

0; ð103Þ

where r
_i is the chemical shift tensor (index i refers to a particular

spin) and B
*

0 is the applied magnetic field. The energy corresponding
to this induced field is:

Ei
CS ¼ &li

*

0Bi
*

ind ¼ li
*

0r
_i 0 B

*

0: ð104Þ

When the quantum mechanical equivalent ðc!hIÞ of the mag-
netic moment vector l

*
is used while summing over all spins, we

obtain:

cHCS ¼
XN

i¼1

cHi
CS ¼ !h

XN

i¼1

ciIi 0 r
_i 0 B

*

0; ð105Þ

where N is the number of spins and I is transposed as in Eq. (81).
From Eq. (104) it is clear that, as the external magnetic field is in-
creased, the interaction energy increases. The direction of the in-
duced magnetic field is not always colinear with the external
magnetic field. Eq. (105) can be written in matrix form as:

cHCS ¼ !hciBo Ii
xI

i
yI

i
z

h i
0

rxx rxy rxz

ryx ryy ryz

rzx rzy rzz

2

64

3

75 0
Bx

By

Bz

2

64

3

75; ð106Þ

that is,

cHi
CS ¼ !hciB0

X

p

X

q

fIi pj i ph jr
_i qj i qh jêng

¼ !hciB0

X

p

X

q

ri
pqI

i
pB
*

q; ð107Þ

where p and q sum over Cartesian axes, ên is the unit vector in the
field direction, and Bq is the projection of ên along the q-axis (in all
cases we reserve ‘^’ to denote operators except when denoting unit
vectors, e.g. ên).

r
_
is a spatial tensor and we can form a spin tensor, X

_

, from the
dyadic products of the spin angular momentum vector and the sta-
tic field vector B

*

n:

v X
_

i
!!!
!!!u

. /
¼ vh jB

*

n1I
i uj i: ð108Þ

We can now write cHCS as:

cHCS ¼ !hciB0

X

p;q¼x;y;z
ri

pqX
i
pq ¼ Cir

_i 1 Xi
_

; ð109Þ

with Ci
CS ¼ !hciB0. The chemical shift tensor is a rank-2 tensor with 9

components and may be represented by a 3( 3 matrix.

r
_
¼

r0
xx r0

xy r0
xz

r0
yx r0

yy r0
yz

r0
zx r0

zy r0
zz

2

64

3

75

¼ r0
iso

1 0 0
0 1 0
0 0 1

2

64

3

75þ
0 a0xy a0xz
&a0xy 0 a0yz
&a0xz &a0yz 0

2

64

3

75þ
s0xx s0xy s0xz
s0yx s0yy s0yz
s0zx s0zy s0zz

2

64

3

75:

ð110Þ

The three tensors on the right-hand side of Eq. (110) are r
_

0, r
_

1

and r
_

2, with ranks 0, 1 and 2, respectively (the primes on the com-
ponent symbols denote that we have defined this tensor in an arbi-
trary frame, and distinguish these matrix component values from
those in the principal axis frame, which we will write without
primes).

For most interactions of interest, the rank-1 component of r
_
is

not necessarily zero unless symmetry makes a0pq ¼ a0qp. Under par-
ticular circumstances, the contribution of the antisymmetric part
of the chemical shift tensor to longitudinal relaxation has been pre-
dicted to be non-negligible (up to about 10%) [43]. A detailed treat-
ment of this effect has been described in the literature [43,44]. We
will however neglect this component in the present analysis. Un-
der this approximation r

_
is diagonal in the principal axis frame:
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r
_
ðPAFÞ ¼

rxx 0 0
0 ryy 0
0 0 rzz

2

64

3

75 ¼ riso

1 0 0
0 1 0
0 0 1

2

64

3

75þ
sxx 0 0
0 syy 0
0 0 szz

2

64

3

75;

ð111Þ

where spp ¼ rpp & riso and riso ¼ 1
3 ðrxx þ ryy þ rzzÞ.

We can define two parameters here: the chemical shift anisot-
ropy parameter, Dr, and an asymmetry parameter, g:

Dr ¼ rzz &
1
2
ðrxx þ ryyÞ ¼

3
2
szz;

g ¼ ðsxx & syyÞ
szz

: ð112Þ

Using these new parameters r
_
ðPAFÞ can be rewritten as:

r
_
ðPAFÞ ¼ riso

1 0 0
0 1 0
0 0 1

2

64

3

75þ
2
3
Dr

& 1
2 ð1& gÞ 0 0

0 & 1
2 ð1þ gÞ 0

0 0 1

2

64

3

75:

ð113Þ

We can now write the chemical shift tensor in the spherical
coordinates in an arbitrary frame (including the rank-1
components):

r0
0 ¼ &

1ffiffiffi
3

p
" #

Trfr̂g;

r0
1 ¼ &

iffiffiffi
2

p
" #

ðrxy & ryxÞ;

r$11 ¼ & 1
2

" #
ðrzx & rxz $ iðrzy & ryzÞ;

r0
2 ¼

1ffiffiffi
6

p
" #

½3rzz & Trfr̂g+;

r$12 ¼ 2 1
2

" #
½rxz þ rzx $ iðryz þ rzyÞ+;

r$22 ¼ 1
2

" #
½ðrxx & ryy $ iðrxy þ ryxÞ+: ð114Þ

Neglecting the antisymmetric components of r
_
, i.e. setting

r0
1 ¼ r$11 ¼ 0 we have in the principal axis frame:

r0
0ðPAFÞ ¼ &

ffiffiffi
3

p
riso;

r0
2ðPAFÞ ¼

ffiffiffiffiffiffiffiffi
2=3

p
Dr;

r$12 ðPAFÞ ¼ 0;

r$22 ðPAFÞ ¼
1
3
Dr g: ð115Þ

For an axially symmetric chemical shift tensor, g ¼ 0,
r$12 ðPAFÞ ¼ 0; and r$22 ðPAFÞ ¼ 0. This is the case treated when
calculating relaxation rates in Section 6.

We now expand X
_

into its irreducible spherical components
using Eq. (94):

X0
0ðAAFÞ ¼ &

1ffiffiffi
3

p
" #

ðBxIx þ ByIy þ BzIzÞ;

X0
1ðAAFÞ ¼

iffiffiffi
2

p
" #

ðByIx & ByIxÞ;

X$11 ðAAFÞ ¼
1
2

" #
½BxIz & BzIx $ iðByIz & BzIyÞ+;

X0
2ðAAFÞ ¼

1ffiffiffi
6

p
" #

½3BzIz & ðBxIx þ ByIy þ BzIzÞ+;

X$12 ðAAFÞ ¼ 2
1
2

" #
½BzIx þ BxIz $ iðBzIy þ ByIzÞ+;

X$22 ðAAFÞ ¼
1
2

" #
½BxIx & ByIy $ iðByIx þ BxIyÞ+: ð116Þ

We can transform X
_

into the laboratory frame. This simplifies
the expression of Xm

l since we have chosen the direction of the
external magnetic field as the þz-axis, thus êxðLABÞ ¼ êyðLABÞ ¼ 0
and êzðLABÞ ¼ 1:

X0
0ðLABÞ ¼ &

1ffiffiffi
3

p
" #

Iz;

X0
1ðLABÞ ¼ 0;

X$11 ðLABÞ ¼ &
1
2
I$;

X0
2ðLABÞ ¼

ffiffiffi
2
3

r
Iz;

X$12 ðLABÞ ¼ 2
1
2
I$;

X$22 ðLABÞ ¼ 0: ð117Þ

The chemical shift tensor can be expressed in an arbitrary axis
frame (AAF) by rotating each component using a Wigner matrix:

rm
l ðAAFÞ ¼

X

m0

Dl#
m;m0 ðXÞrm0

l ðPAFÞ; ð118Þ

whereX ¼ ðh;/; cÞ are the Euler angles for the rotation from the PAF
to the AAF.

Now the chemical shift Hamiltonian can be expressed in terms
of irreducible spherical tensors in the LAB frame:

cHi
CS ¼ Ci r

_
1X

_

¼ Ci
X2

l¼0

Xl

m¼&l

ð&1ÞmðriÞ&ml 0 ðXiÞml : ð119Þ

We can substitute Eq. (117), (118) and (110) into Eq. (119). We
should keep in mind that we are neglecting the rank-1 component:

cHi
CS ¼ CiðriÞ00ðX

iÞ00 þ Ci
X2

m¼&2
ð&1ÞmðriÞ&m2 ðXiÞm2 ¼ cH

i
ISO þ cH

i
CSA:

ð120Þ
cHISO, the isotropic component of the chemical shift tensor, is

rotationally invariant. Thus cHISO is time-independent and does
not have any contribution to relaxation. It is usually added to the
Zeeman Hamiltonian and constitutes a part of cH0. cHCSA represents
the chemical shift anisotropy.

To generalize the final expression of the chemical shift Hamilto-
nian, we will relate ðriÞml and ðXiÞml to new tensors Fm

l and Tm
l ,

respectively; given by:

Fm
l ¼

ffiffiffiffiffiffiffi
5
6p

r
rm

l

szz
; ð121aÞ

Tm
l ¼ &2X

m
l : ð121bÞ

Defining a chemical anisotropy interaction constant,

nCSAi ¼ &
ffiffiffiffi
6p
5

q
!hciB0szz we can write the chemical shift anisotropy

Hamiltonian for the ith spin in the LAB frame as

cHCSAðLAB;t; iÞ ¼ nCSAi

X2

m¼&2
ð&1ÞmF&m2 ðLAB;t; iÞTm

2 ðLAB;iÞ: ð122Þ

3.1.3. The dipolar Hamiltonian
The classical interaction energy between two dipoles, l

*

i and lj
*
,

located at two points in space linked by the vector r
*
, is given by

(see Appendix B):

Eij
DD ¼

l0

4p
l
*

i 0 l
*

j

r3
& 3ðl

*

i 0 r
*
Þ 0 ðl

*

j 0 r
*
Þ

r5

 !
; ð123Þ

where l0 is the permeability of free space (not to be confused with
the magnetic dipole moment). Summing over all spin pairs and
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replacing l
*
with its quantummechanical equivalent, c!hI

*

, the dipo-
lar Hamiltonian can be written as:

cHDD ¼
l0

4p
X

i

X

j>i

cicj!h
2

r
*3
ij

Ii 0Ij & 3½Ii 0 êij+½Ij 0 êij+
0 1

; ð124Þ

êij ¼
r
*
ij

rij
and ê is dyadic; ê ¼ êijê

y
ji so that hujêjvi ¼ euev . Eq. (124) can

be written as:

cHij
DD ¼

cicj!h
2

r3ij
Ii 0 D

_

0Ij
2 3

; ð125Þ

where D
_

is a 3( 3 matrix (dipolar tensor; note that elsewhere in the
article, the symbol D

_

is reserved for the diffusion tensor), the ele-
ments of which are given by:

uh jD
_

ij vj i ¼ duv & 3ejue
i
v ; ð126Þ

where ðu;v ¼ fx; y; zgÞ. Now the Hamiltonian defined in Eq. (124)
can be expanded into combinations of spatial and spin components:

cHDD ¼
l0

4p
XN

i;j;ðj>iÞ

cicj!h
2

r3ij
Ii

x Ii
y Ii

z

h i
0

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

2

64

3

75 0
Ij

x

Ij
y

Ij
z

2

664

3

775:

ð127Þ

We can define X
_

ij as the dyadic product of the two spin angular
momentum vectors:

vh jX
_
ij uj i ¼ vjIj1Iiju

4 5
ð128Þ

then:

cHDD ¼
l0

4p
XN

i;j;ðj>iÞ

cicj!h
2

r
*3
ij

Xaxes

u;v
uh jD

_
ij vj i vh jX

_
ij uj i; ð129Þ

cHDD ¼
l0

4p
XN

i;j;ðj>iÞ
CijD

_
ij 1 X

_
ij; ð130Þ

where, Cij ¼ l0
4p

cicj!h
2

r3
ij
.

In the principal axis frame (PAF) the z-axis of the Cartesian
coordinate system is colinear with the vector joining the two di-
poles. We can derive the dipolar matrix from Eq. (126) as

D
_

ðPAFÞ ¼
1 0 0
0 1 0
0 0 &2

2

64

3

75: ð131Þ

The dipolar tensor is traceless so there is no rank-0 component. This
means that, when averaged over all spatial orientations, the dipolar
interaction does not change the energy levels of the system. There is
no rank-1 component because the dipolar tensor is symmetric.

The ideality of this formulation of the dipolar tensor breaks
down when the system is nonlinear (more than two spins). Nonlin-
ear systems require the use of multiple coordinate systems where
the dipolar tensor, D

_
ij, of each pair is diagonal.

Using an internal (i.e. molecule-fixed) coordinate frame simpli-
fies the representations since only two Euler angles, / and h, are
necessary. The third angle, c, is arbitrary; an obvious choice is
c ¼ 0 since the z axes can be aligned with the dipolar PAF.

Before performing any rotations we should represent the rank-2
components (i.e. the only non-zero components) of the dipolar ten-
sor in terms of irreducible spherical tensors:

D0
2ðPAFÞ ¼

½3Dzz & TrfDg+ffiffiffi
6

p ¼ &
ffiffiffi
6

p
;

D$12 ðPAFÞ ¼ 2
1
2
½Dxz þ Dzx $ iðDyz þ DzyÞ+ ¼ 0;

D$22 ðPAFÞ ¼
1
2
½Dxx þ Dyy $ iðDxy þ DyxÞ+ ¼ 0: ð132Þ

From the irreducible spherical components of the dipolar tensor
expressed in its principal axis frame, we can write D

_

in any coordi-
nate system by using Wigner rotations, i.e. with the set Euler an-
gles X ¼ ð/; h;0Þ

Dm
l ðAAFÞ ¼

X

m0

Dl#
m;m0 ðXÞDm0

l ðPAFÞ; ð133Þ

Dm
2 ðAAFÞ ¼ D2#

m;0ðXÞD
0
2 ¼ &

ffiffiffi
6

p
D2#

m;0ðXÞ; ð134Þ

with

Dl#
m;0ð/; h; cÞ ¼

4p
2lþ 1

" #1
2

Ym
l ðh;/Þ; ð135Þ

where Ym
l ðh;/Þ are the well known spherical harmonics (see Appen-

dix D). Thus

Dm
2 ðAAFÞ ¼ &

ffiffiffi
6

p
D2#

m;0ðXÞ ¼ &
ffiffiffi
6

p
ffiffiffiffiffiffiffi
4p
5

r !
Ym

2 ¼ &
ffiffiffiffiffiffiffiffiffi
24p
5

r
Ym

2 : ð136Þ

We can also express the spin tensor, X
_

, in terms of irreducible
spherical tensors from the Cartesian components, Xij

uv ¼ Ij
uI

i
v , and

X0
0ðAAFÞ ¼ &

1
3
½Xij

xx þ Xij
yy þ Xij

zz+ ¼ &
1
3
½Ii 0Ij+:

X0
1ðAAFÞ ¼

i
2
½Xij

xy & Xij
yx+ ¼

i
2
½Ij

xI
i
y &Ij

yI
i
x+:

X$11 ðAAFÞ ¼
1
2

Xij
zx & Xij

xz $ i½Xij
zy & Xij

yz

n o

¼ 1
2

Ij
zI

i
x &Ij

xI
i
z $ i½Ij

zI
i
y &Ij

yI
i
z+

n o
:

X0
2ðAAFÞ ¼

1ffiffiffi
6

p 3Xzz & Xij
xx þ Xij

yy þ Xij
zz

h in o

¼ 1
2

ffiffiffi
6

p f4Ij
zI

i
z & ½I

j
þI

i
& þIj

&I
i
þ+g:

X$12 ðAAFÞ ¼ 2
1
2

Xij
xz þ Xij

zx $ i½Xij
yz þ Xij

zy

n o
¼ 21

2
½Ii

zI
j
$ þIj

zI
i
$+:

X$22 ðAAFÞ ¼
1
2
fXij

xx & Xij
yy $ i½Xij

xy þ Xij
yxg ¼

1
2
Ii
$I

j
$: ð137Þ

No rotations of the spin tensors are required since they have al-
ready been expressed in an arbitrary axis frame (AAF).

We now have expressions for the dipolar and spin tensors in an
arbitrary axes system. We can express the Hamiltonian in an AAF
in terms of irreducible spherical tensors:

cHij
DDðAAFÞ ¼ Cij

DDD
_

ijðAAFÞ 1 X
_

ijðAAFÞ

¼ Cij
DD

X2

l¼0

Xl

m¼&l

ð&1ÞmðDijÞ&ml ðAAFÞðXijÞml ðAAFÞ; ð138Þ

which can be simplified since only rank-2 components of D
_

are
nonzero:

cHij
DDðAAFÞ ¼ Cij

DD

X2

m¼&2
ð&1ÞmðDijÞ&m2 ðAAFÞðXijÞm2 ðAAFÞ: ð139Þ

We now write explicitly cHij
DDðAAFÞ in tensorial form remem-

bering that Dm
2 ¼ &

ffiffiffiffiffiffi
24p
5

q
Ym

2 ðh;/Þ and defining ðTijÞm2 ¼ &2ðX
ijÞm2 .
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The dipolar Hamiltonian becomes

cHij
DDðAAFÞ ¼ Cij

DD

(
X2

m¼&2
ð&1Þm &

ffiffiffiffiffiffiffiffiffi
24p
5

r
Y&m2 ðh;/Þ

( )
&1
2
ðTijÞm2

2 3
;

ð140Þ

with the dipolar interaction constant nijD ¼ Cij
DD

ffiffiffiffi
6p
5

q
.

Finally we can write the dipolar Hamiltonian for one spin pair in
the laboratory frame:

cHij
DDðLAB;tÞ ¼ nijD

X2

m¼&2
ð&1ÞmðYijÞ&m2 ðLAB;tÞðTijÞm2 ðLABÞ; ð141Þ

where the spherical harmonics ðYijÞm2 ðLAB;tÞ are derived from Wig-
ner rotation matrices:

ðYijÞm2 ðLAB;tÞ ¼
X2

m0¼&2
D2#

m;m0 ½XijðtÞ+ðYijÞm
0

2 ðAAFÞ: ð142Þ

Thus we have defined two of the key terms that constitute
cH1ðtÞ in Eq. (37), i.e. cHlðtÞ. These two components, namely the
CSA component and the dipolar component, are defined by Eq.
(122) and by Eqs. (141 and 142), respectively. Thus defining both
of these Hamiltonians in the LAB frame, we can now proceed to
consider molecular rotational diffusion in this frame. This rota-
tional diffusion is what gives rise to the stochastic fluctuations that
lead to the time dependence of cH1ðtÞ in Eq. (37).

4. Rotational diffusion of rigid molecules in randomly-ordered
or isotropic solvents

In the following three parts of this article, we assume knowl-
edge of rotational diffusion theory. Detailed derivations are pro-
vided in Appendix E.

The simplest diffusive orienting potential is the zero-potential
UðXÞ ¼ 0; that is, free diffusion. This is the case for molecular rota-
tional diffusion in an isotropic solvent. Note that while we assume
the solvent ordering to be isotropic in this section, this does not im-
ply that molecular tumbling is isotropic. As shown below, the nat-
ure of molecular rotational diffusion is a function of the geometry
of the diffuser.

4.1. The diffusion equation and the rotational diffusion operator (R̂)

Imagine a ‘rigid’ molecule tumbling freely in solution. Let X rep-
resent the set of time-dependent Euler angles ðh;/; cÞ that relate
the laboratory frame (LAB) to the principal axis frame (PAF) of
the molecular rotational diffusion tensor (i.e. molecule-fixed
frame) at a given instant.

PðX; tÞdenotes theprobability of finding themolecule in orienta-
tion X at some time t. The conditional probability PðX; tjX0Þ is the
probability of finding the molecule in orientation X at time t, given
that it was in orientation X0 at a time arbitrarily defined as t ¼ 0.

The time-evolution of PðX; tjX0Þ is given by the Fokker-Planck
diffusion equation (see Appendix E),

@PðX; tjX0Þ
@t

¼ & bRPðX; tjX0Þ ¼ & bRP; ð143Þ

where bR is the rotational diffusion operator. For free diffusion (i.e.
zero ordering potential), bR is given by

bR ¼ bR0 ¼
X

p;q¼x;y;z

cLpD0
pq
cLq; ð144Þ

where cLp and cLq are the p and q components of the dimensionless

classical angular momentum (infinitesimal rotation) operator cL
*

,

respectively, and D0
pq is the p; q component of the rotational diffu-

sion tensor, p; q ¼ fx; y; zg in an arbitrary reference frame (see

Appendix E). BothcL
*

and bI
*

are used to denote the angular momen-

tum but cL
*

is the representation of angular momentum in real

space whereas bI
*

is in spin space. For a rigid molecule, D0
pq is

time-independent.

4.2. Solving the diffusion equation

To solve the diffusion equation [13], it is most convenient to
work in orientational space, i.e. that spanned by the Euler angles
ð/; h; cÞ, rather than in Cartesian space. This enables transforma-
tions between reference frames in a simple fashion. Eq. (E61) pro-
vides the general solution to the rotational diffusion equation,
which is reproduced for convenience below:

P ¼
X

m
W#

m X0ð ÞWm Xð Þe&bmt : ð145Þ

TheWmðXÞ are eigenfunctions of the rotational diffusion operator bR,
with corresponding eigenvalues bm. The specific forms of these
eigenfunctions and eigenvalues are dictated by bR, which is in turn
determined by the ordering potential UðXÞ. In the remainder of this
part of the article, we determineWmðXÞ and bm for the case of the dif-
fusion operator bR0 resulting from an ordering potential UðXÞ ¼ 0
(free diffusion).

4.2.1. Determination of WmðXÞ and bm
4.2.1.1. Expansion of WmðXÞ in the basis of Wigner rotation func-
tions. We begin by identifying an acceptable basis in which to
complete our calculations. The normalized Wigner rotation func-
tions Dl

m;m0 ðXÞ, introduced earlier in the context of rotations be-
tween PAF, LAB and AAF, form a complete orthonormal set and,
as such, provide a convenient basis for expanding WmðXÞ. We
may expand the WmðXÞ in the basis of the normalized Wigner rota-

tion functions
ffiffiffiffiffiffiffi
2lþ1
8p2

q
Dl

m;m0 ðXÞ as

Wm Xð Þ ¼
X

l;m;m0

clm;m;m0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1
8p2

r
Dl

m;m0 Xð Þ; ð146Þ

where the clm;m;m0 are the projections of WmðXÞ onto each of the basis

functions
ffiffiffiffiffiffiffi
2lþ1
8p2

q
Dl

m;m0 ðXÞ;0 6 l 6 1, j m j; j m0 j6 l and l ¼ 0 is a sca-

lar and therefore a constant. This is essentially the multipole expan-
sion, used in electromagnetic theory [45].

Substitution of Eq. (146) into (145) yields the general solution
for P in the Wigner basis in the most explicit form:

P¼
X

m

X

l;m;m0

clm;m;m0

ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1
8p2

r
Dl #

m;m0 X0ð Þ
" #

X

s;r;r0
csm;r;r0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2sþ1
8p2

r
Ds

r;r0 Xð Þ
" #

e&bmt :

P ¼ 1
8p2

X

m

X

l;m;m0

X

s;r;r0

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1ð Þ 2sþ 1ð Þ

q
clm;m;m0 csm;r;r0 D

l #
m;m0 X0ð Þ Ds

r;r0 Xð Þe
&bmt : ð147Þ

4.2.1.2. Matrix expression of bR in the basis of Wigner rotation func-
tions. Methods of calculation. We will follow the usual approach
to obtain the eigenvalues bm by solving the characteristic equation
j bR & bm1j ¼ 0, where 1 is the identity matrix. To do this, we must
first express the operator bR as a matrix in the basis of the Wigner
rotation functions.
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We compute each ‘matrix element’ of bR is this basis as:

RðDÞ
l0 l;k0k;j0 j ¼ l0; k0; j0

4 !! bR l; j; kj i; ð148Þ

where jl; k; ji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1=8p2

p
Dl

kjðXÞ. Note that to prevent notational
crowdedness due to use of ‘double primes’, the indexes have been
changed to fl; j; kg from fl;m;m0g. To evaluate explicitly the various
terms RðDÞ

l0 l;k0k;j0 j we must fully understand the operation of bR on each

of the basis kets j l; k; ji. This, in turn, depends on our choice of ref-
erence frame (because tensor elements D0

pq are frame-dependent).
Working in the principal axis frame of the molecular rotational dif-
fusion tensor is a logical choice, especially because it simplifies the
expression for bR considerably. In the PAF represented in a Cartesian

basis, D
_

is diagonal with principal components Dxx;Dyy, and Dzz. Note
that we have removed the primes for the Dpq (compare to Eq. (144))
to denote that these are the tensor elements in the diffusion tensor
PAF. Note that we have also used Dpq where p; q ¼ fx; y; zg to
represent the components of the dipolar tensor, e.g. in Eq. (127).

Since D
_

is diagonal, all elements Dp;q – p are zero, and using the mol-
ecule-fixed Cartesian coordinates, Eq. (144) reduces to:

bRðPAFÞ ¼ DxxcL2
x þ DyycL2

y þ DzzcL2
z : ð149Þ

Through fairly straightforward algebraic manipulation, Eq.
(149) can be converted into a form that is better suited for an ori-
entational frame:

bRðPAFÞ ¼ AcL2 þ 1
2
BðcL2

þ þcL
2
&Þ þ CcL2

z ; ð150Þ

where cL2 is the (dimensionless) total angular momentum operator
squared, cL$ are the ladder operators,

cL2 ¼ cL2
x þcL

2
y þcL

2
z
cL$ ¼ cLx $ icLy; ð151Þ

and the parameters A;B, and C are given by

A ¼ 1
2

Dxx þ Dyy
$ %

;

B ¼ 1
2

Dxx & Dyy
$ %

C ¼ Dzz & A:
ð152Þ

The angular momentum operators act on the normalized Wig-
ner Functions, j l; k; ji, in a manner analogous to their operation
on the well-known spherical harmonics, namely

cL2jl; k; ji ¼ lðlþ 1Þjl; k; ji cLzjl; k; ji ¼ kjl; k; ji;

cL$jl; k; ji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 kÞðl$ kþ 1Þ

q
jl; k$ 1; ji;

cL2
$jl; k; ji ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 kÞðl$ kþ 1Þðl2 k& 1Þðl$ kþ 2Þ

q
jl; k$ 2; ji:

ð153Þ

The Planck’s constant !h does not appear in Eq. (153) because cL
*

is
dimensionless.

Note that j l; k; ji corresponds to a rotation from the laboratory
frame (LAB) to the molecular frame in which the diffusion tensor
ðD
_

Þ is diagonal (PAF). While k is the eigenvalue of the cLz operator
in the diffusion tensor PAF (see Eq. (153)), j is the eigenvalue of cLz

in the laboratory frame (i.e. the projection of the component of
angular momentum parallel to the z-axis in the LAB frame). Like-
wise, the ladder operators have no interaction with j, since we
are working in the PAF of the diffusion tensor. While we have omit-
ted frame designation in the notation of our angular momentum
operators, an understanding of these properties will become
increasingly important in following parts of this article.

We are now in a position to evaluate Eq. (148), using
bR ¼ bRðPAFÞ as expressed in Eq. (150). Defining the constants
n$lk 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 kÞðl$ kþ 1Þðl2 k& 1Þðl$ kþ 2Þ

p
we can write

bR l; k; jj i ¼ AcL2 l; k; jj i þ
1
2
B cL2

þ l; k; jj i þcL2
& l; k; jj i

& '
þ CcL2

z l; k; jj i

¼ Alðlþ 1Þ l; k; jj i þ
1
2
B nþlkjl; kþ 2; ji þ n&lkjl; k& 2; ji
$ %

þ Ck2 l; k; jj i

l0; k0; j0
4 !! bR l; k; jj i ¼ Alðlþ 1Þ l0; k0; j0

4
jl; k; ji

þ 1
2
B nþlk l0; k0; j0

4
l; kþ 2; jj i þ n&lk l0; k0; j0

4
l; k& 2; jj i

$ %

þ Ck2 l0; k0; j0
4

jl; k; ji:
ð154Þ

We omit the (PAF) notation henceforth for tidiness, but it is under-
stood that we continue to work exclusively in the PAF of the rota-
tional diffusion tensor.

Employing the orthogonality relation in Eq. (154), we have:

l0; k0; j0
4 !! bRjl; k; ji ¼ Alðlþ 1Þdl0 ldk0kdj0j

þ 1
2
B nþlkdl0 ldk0 ;kþ2dj0 j þ n&lkdl0 ldk0 ;k&2dj0j
$ %

þ Ck2dl0 ldk0kdj0 j; ð155Þ

and finally,

RðDÞ
l0 l;k0k;j0 j ¼ hl0; k0; j0j bRjl; k; ji

¼ dl0 ldj0 j dk0k Alðlþ 1Þ þ Ck2
& '

þ 1
2
B nþlkdk0 ;kþ2 þ n&lkdk0 ;k&2
$ %( )

;

ð156Þ

where the superscript ðDÞ implies that we are in the PAF of the dif-
fusion tensor.

Eq. (156) looks rather complicated. However, matters may be
simplified considerably upon closer inspection. It is evident that
Wigner basis functions with values of l0 – l do not interact in Eq.
(156). In addition, the Dl

kjðXÞ are defined such that for each value
of l, the values of j and k range from &l to l in integer steps; that
is j or k ¼ &l;&lþ 1;&lþ 2 . . . l& 1; l. It is convenient, then, to di-
vide the l0l; k0k; j0j-space into l-subspaces, in which we consider only
‘ bR-mixing’ of basis functions with one value of l at a time. This fol-
lows from the fact that two tensors of different rank (i.e. different
values of l) do not interact. For the purposes of finding the eigen-
values, then, we may rewrite Eq. (156) in the following way,
implicitly assuming l0 ¼ l:

RðDÞðlÞ
k0k;j0 j

¼ dj0 j
dk0k Alðlþ 1Þ þ Ck2

& '

þ 1
2B nþlkdk0 ;kþ2 þ n&lkdk0 ;k&2
$ %

8
<

:

9
=

;: ð157Þ

It is also clear that bRðDÞðPAFÞ does not mix Wigner basis func-
tions with values of j and j0 – j (this is expected physically, since
bRðDÞðPAFÞ is in the PAF of the molecular rotational diffusion tensor,
while j is related to the z-component of angular momentum in the
laboratory frame). Moreover, even for j0 ¼ j, the matrix elements in
Eq. (157) have no dependence on j-values whatsoever (whereas
they do depend on l; k, and k0). We can then further simplify Eq.
(157), writing it as

RðDÞðlÞ
k0k

¼ dk0k Alðlþ 1Þ þ Ck2
& '

þ 1
2
B nþlkdk0 ;kþ2 þ n&lkdk0 ;k&2
$ %

: ð158Þ

Explicit matrix expressions
Using Eq. (158) we may finally write explicit matrix representa-

tions for RðDÞðlÞ
k0k . Beginning with rank l ¼ 1, we have

M.P. Nicholas et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 57 (2010) 111–158 127



RðDÞð1Þ
k0k ¼ dk0k 2Aþ Ck2

& '
þ 1
2
B nþ1;kdk0 ;kþ2 þ n&1;kdk0 ;k&2
& '

; ð159Þ

where

nþ1;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1& kÞð2þ kÞð&kÞð3þ kÞ

q

n&1;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kÞð2& kÞðkÞð3& kÞ

q ð160Þ

and we will compute the matrix RðDÞð1Þ as follows:

k ¼ &1 k ¼ 1 k ¼ 0

RðDÞð1Þ ¼

RðDÞð1Þ
&1;&1 RðDÞð1Þ

&1;1 RðDÞð1Þ
&1;0

RðDÞð1Þ
1;&1 RðDÞð1Þ

1;1 RðDÞð1Þ
1;0

RðDÞð1Þ
0;&1 RðDÞð1Þ

0;1 RðDÞð1Þ
0;0

0

BB@

1

CCA

k0 ¼ &1
k0 ¼ 1
k0 ¼ 0:

ð161Þ

Evaluating Eq. (161) is straightforward and yields:

RðDÞð1Þ ¼
2Aþ C B 0

B 2Aþ C 0
0 0 2A

0

B@

1

CA: ð162Þ

By identical methods, for rank l ¼ 2

RðDÞð2Þ
k0k

¼ dk0k 6Aþ Ck2
& '

þ 1
2
B nþ2;kdk0 ;kþ2 þ n&2;kdk0 ;k&2
& '

; ð163Þ

where

nþ1;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2& kÞð3þ kÞð1& kÞð4þ kÞ

q

n&1;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ kÞð3& kÞð1þ kÞð4& kÞ

q
: ð164Þ

The columns of the matrix representation of RðDÞð2Þ are reordered as
follows:

RðDÞð2Þ ¼

k ¼ &1; k ¼ 1; k ¼ &2; k ¼ 0; k ¼ 2

RðDÞð2Þ
&1;&1 RðDÞð2Þ

&1;1 0 0 0 0 0 0 0 0 0 0 0 0 RðDÞð2Þ
&1;2

RðDÞð2Þ
1;&1 RðDÞð2Þ

1;1 0 0 0 0 0 0 0 0 0 0 0 0 RðDÞð2Þ
1;2

..

. ..
. . .

. . .
. ..

.

..

. ..
. . .

. . .
. ..

.

RðDÞð2Þ
2;&1 RðDÞð2Þ

2;1 0 0 0 0 0 0 0 0 0 0 0 0 RðDÞð2Þ
2;2

0

BBBBBBBBB@

1

CCCCCCCCCA

k0 ¼ &1
k0 ¼ 1
k0 ¼ &2
k0 ¼ 0
k0 ¼ 2:

ð165Þ

This order yields a block-diagonal matrix form for RðDÞð2Þ, which
simplifies further calculations significantly. A straightforward but
cumbersome derivation yields

RðDÞð2Þ ¼

6Aþ C 3B 0 0 0
3B 6Aþ C 0 0 0
0 0 6Aþ 4C

ffiffiffi
6

p
B 0

0 0
ffiffiffi
6

p
B 6A

ffiffiffi
6

p
B

0 0 0
ffiffiffi
6

p
B 6Aþ 4C

0

BBBBBB@

1

CCCCCCA
: ð166Þ

4.2.1.3. Solving the characteristic equation. Armed with explicit ma-
trix representations, we now seek to determine the eigenvalues
bðlÞm and eigenfunctions WðlÞ

m in the Wigner basis. We do this
through the usual approach of solving the characteristic equation,
detðRðDÞðlÞ & bðlÞm 1Þ ¼ 0.

Rank-1: Let us begin with the simpler case of the rank-1 tensor.
The characteristic equation is:

2A& bð1Þm

& '
2Aþ C & bð1Þm

& '2
& B2

( )
¼ 0: ð167Þ

Solving Eq. (167) for bð1Þm yields

bð1Þm ¼ 2Aþ C $ B; 2A: ð168Þ

Entering these results in the eigenvalue Eq. (E52), we can solve for
the eigenvectors (eigenfunctions):

RðDÞð1ÞWð1Þ
m ¼ bð1Þm Wð1Þ

m

2Aþ C B 0
B 2Aþ C 0
0 0 2A

0

B@

1

CA

cð1Þm;&1

cð1Þm;þ1

cð1Þm;0

0

BB@

1

CCA ¼ bm

cð1Þm;&1

cð1Þm;þ1

cð1Þm;0

0

BB@

1

CCA:
ð169Þ

As before, the cðlÞm;k are the components of the eigenfunctions in
the Wigner-function basis. Eq. (169) amounts to (yet another)
system of linear equations, which may be solved easily for the
components cðlÞm;k. The full set of normalized (in the sense that
Wð1ÞT

i Wð1Þ
j ¼ dij, where superscript T implies the transpose) eigen-

vectors and eigenvalues for the rank l ¼ 1 tensor is given by

Wð1Þ
&1 ¼

ffiffi
1
2

q &1
1
0

0

B@

1

CA Wð1Þ
þ1 ¼

ffiffi
1
2

q 1
1
0

0

B@

1

CA Wð1Þ
0 ¼

0
0
1

0

B@

1

CA

bð1Þ&1 ¼ 2Aþ C & B bð1Þþ1 ¼ 2Aþ C þ B bð1Þ0 ¼ 2A

bð1Þ&1 ¼ Dyy þ Dzz bð1Þþ1 ¼ Dxx þ Dzz bð1Þ0 ¼ Dxx þ Dyy:

ð170Þ

In the last line of Eq. (170), we have explicitly computed the
eigenvalues bm in terms of the principal components of the diffu-
sion tensor (see Eq. (152)).

Rank-2: The approach for the rank-2 tensor is identical to that
for the rank-1 tensor, although the computations are necessarily
somewhat more complicated. The characteristic equation is

det RðDÞð2Þ & bð2Þm 15

& '
¼ 0; ð171Þ

where 15 is the 5( 5 identity matrix.
Since RðDÞð2Þ is block-diagonal, ðRðDÞð2Þ & bð2Þm 15Þ is block diagonal

as well, and the determinant of the whole matrix is simply the
product of the determinants of the individual blocks. It can be
shown easily that Eq. (171) evaluates to

2 3Aþ 2Cð Þ & bð2Þm

h i
6Aþ 3Bþ C & bð2Þm

h i
6A& 3Bþ C & bm½ +

( 4 9A2 þ 6AC & 3B2 & bð2Þm 3Aþ Cð Þ
& '

þ bð2Þm

& '2
( )

; ð172Þ

which when solved for bð2Þm yields

bð2Þm ¼ 6Aþ 4C; 6Aþ C $ 3B; 2 3Aþ C $
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3B2 þ C2

q" #
: ð173Þ

As above, we proceed by writing the eigenvalue equation

RðDÞð2ÞWð2Þ
m ¼ bð2Þm Wð2Þ

m ¼ bð2Þm

c 2ð Þ
m;&1

c 2ð Þ
m;þ1

c 2ð Þ
m;&2

c 2ð Þ
m;0

c 2ð Þ
m;þ2

0

BBBBBBBB@

1

CCCCCCCCA

; ð174Þ

which amounts to a system of linear equations that we must
solve to determine the components of the eigenvectors. The solu-
tions for three of the five eigenvector/eigenvalue pairs are fairly
straightforward:
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Wð2Þ
&2¼

ffiffi
1
2

q

0
0
&1
0
1

0

BBBBBB@

1

CCCCCCA
Wð2Þ
&1¼

ffiffi
1
2

q

&1
1
0
0
0

0

BBBBBB@

1

CCCCCCA
Wð2Þ
þ1¼

ffiffi
1
2

q

1
1
0
0
0

0

BBBBBB@

1

CCCCCCA

bð2Þ&2¼6Aþ4C bð2Þ&1¼6AþC&3B bð2Þþ1¼6AþCþ3B

bð2Þ&2¼DxxþDyyþ4Dzz bð2Þ&1¼Dxxþ4DyyþDzz bð2Þþ1¼4DxxþDyyþDzz:

ð175Þ

The other two cases are not so simple, especially when the nor-
malization requirement is imposed. Let us first examine the m ¼ 2
case, without imposing any normalization:

wð2Þþ2 ¼

0
0
1

&
ffiffi
6

p
C&

ffiffiffiffiffiffiffiffiffiffiffiffi
3B2þC2

p$ %

3B

1

0

BBBBBB@

1

CCCCCCA

bð2Þþ2 ¼ 2 3Aþ C þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3B2 þ C2

q" #
;

ð176Þ

where we have used w (rather than W) to emphasize that the vector
is not normalized. When expressed in terms of the principal compo-
nents of the diffusion tensor, bð2Þþ2 becomes rather unwieldy. A bit of
algebraic manipulation reveals that the expression simplifies signif-
icantly by defining the constants

a ¼ 1
3

Dxx þ Dyy þ Dzz
$ %

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

DxxDyy þ DyyDzz þ DzzDxx
$ %

r ð177Þ

whence

bð2Þþ2 ¼ 6 aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 & b2

q" #
: ð178Þ

We now wish to find an analogous simplifying parameteriza-
tion for Wð2Þ

þ2. Normalization of wð2Þþ2 yields

wð2Þþ2ffiffiffiffiffiffiffiffiffiffiffiffiffi
wð2ÞTþ2 wð2Þþ2

p ¼ Wð2Þ
þ2

¼

0
0ffiffi
3

p
B

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3B2þC2&C

ffiffiffiffiffiffiffiffiffiffiffiffi
3B2þC2

pp

ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
3B2þC2

p
&C

$ %

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3B2þC2&C

ffiffiffiffiffiffiffiffiffiffiffiffi
3B2þC2

pp
ffiffi
3

p
B

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3B2þC2&C

ffiffiffiffiffiffiffiffiffiffiffiffi
3B2þC2

pp

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

3

0
0
X
Y
Z

0

BBBBBB@

1

CCCCCCA
:

ð179Þ

Note that Z ¼ X in Eq. (179). We search for a convenient change
of variables by taking the ratio X=Y and arbitrarily equating it with
the tangent of a new parameter vþ2 (which we are about to deter-
mine). We add the factor of 1=

ffiffiffi
2

p
with some foresight of the final

result, as it makes the expression for our parameter vþ2 somewhat
simpler:

X
Y
¼ 1ffiffiffi

2
p

sinvþ2
cosvþ2

)
X ¼ 1ffiffi

2
p sinvþ2

Y ¼ cosvþ2:

(
ð180Þ

The manipulations to determine vþ2 are straightforward:

X
Y
¼

ffiffiffi
3

p
B

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3B2 þ C2

p
& C

& ' ) tanvþ2 ¼
ffiffiffi
3

p
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3B2 þ C2
p

& C
;

vþ2 ¼ arctan
ffiffiffi
3

p
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3B2 þ C2
p

& C

" #

¼ arctan

ffiffi
3

p

2 Dxx & Dyy
$ %

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3B2 þ C2

p
& Dzz þ 1

2 Dxx þ Dyy
$ %

" #

: ð181Þ

vþ2 ¼ arctan
ffiffiffi
3

p
Dxx & Dyy
$ %

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 & b2

q
& 2Dzz þ Dxx þ Dyy

2

64

3

75: ð182Þ

Using Eqs. (180) and (182), we can express Wð2Þ
þ2 in a manageable

form as

Wð2Þ
þ2 ¼

0
0

sinvþ2ffiffi
2

p

cosvþ2
sinvþ2ffiffi

2
p

0

BBBBBB@

1

CCCCCCA
¼

ffiffiffi
1
2

r
0
0

sinvþ2ffiffiffi
2

p
cosvþ2

sinvþ2

0

BBBBBB@

1

CCCCCCA
: ð183Þ

By identical methods to those above, the last rank 2 eigenvector,
Wð2Þ

0 , and its corresponding eigenvalue are found to be

Wð2Þ
0 ¼

ffiffiffi
1
2

r
0
0

sinv0ffiffiffi
2

p
cosv0

sinv0

0

BBBBBB@

1

CCCCCCA
; ð184Þ

where

v0 ¼ arctan
ffiffiffi
3

p
Dxx & Dyy
$ %

Dxx þ Dyy & 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 & b2

q
& 2Dzz

2

64

3

75

bð2Þ0 ¼ 6 a&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 & b2

q" #
ð185Þ

4.2.2. Symmetrical molecules
In the preceding sections, we have assumed no molecular sym-

metry. For an axially symmetric (i.e. a rod, disk, or ellipsoid) or
spherically symmetric molecule, the method for solving the master
equation is identical to the one followed above, but the calcula-
tions are less laborious. In the case of axial symmetry, we take
the z-axis of the molecular frame to be along the symmetry axis
of the molecule. Due to the symmetry, the diffusion is isotropic
in the x and y directions of the diffusion tensor PAF. Accordingly
we may write Dxx ¼ Dyy ¼ D? and Dzz ¼ Dk, and therefore

A ¼ D? B ¼ 0 C ¼ Dk & D?: ð186Þ

For spherically symmetric molecules, which diffuse completely iso-
tropically, Dxx ¼ Dyy ¼ Dzz ¼ Do, and

A ¼ Do B ¼ C ¼ 0: ð187Þ

Eqs. (186) and (187)maybedirectly substituted into the characteristic
equations to derive the eigenvalues and corresponding eigenvectors.

4.2.2.1. For axially symmetric systems

Rank-1:
RðDÞð1Þ in Eq. (162) is diagonal, and since B ¼ 0, the eigenvalues

are:

f2Aþ C; 2Aþ C; 2Ag ¼f Dk þ D?; Dk þ D?; 2D?g:

Rank-2:
Again in this case RðDÞð2Þ in Eq. (171) is diagonal, with

eigenvalues:
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f6Aþ C; 6Aþ C; 6Aþ 4C; 6A; 6Aþ 4Cg
¼ f5D? þ Dk; 5D? þ Dk; 2D? þ 4Dk; 6D?; 2D? þ 4Dkg:

4.2.2.2. For isotropic systems.

A ¼ D ¼ Do; B ¼ C ¼ 0:

RðDÞð1Þ is a scalar with a diffusion constant 2D (i.e. RðDÞðlÞ ¼ 2D1),
RðDÞð2Þ is also a scalar with a diffusion constant 6D.

4.2.3. Equilibrium probability distribution
Calculation of the equilibrium probability distribution is

straightforward. Direct substitution of UðXÞ ¼ 0 into Eq. (E63)
yields

Peq Xð Þ ¼ exp &U Xð Þ=kBT½ +R
exp &U Xð Þ=kBT½ +dX

¼ 1R
dX

Peq Xð Þ ¼ 1
R 2p
0 dh

R p
0 sin/d/

R 2p
0 dc

¼ 1
8p2 :

ð188Þ

Alternatively, considering Eq. (E64),

lim
t!1

P X; tjX0ð Þ ¼ Peq Xð Þ: ð189Þ

It is evident from inspection of Eq. (147) that in the long time limit,
all terms in the summations vanish (because they contain the
decaying exponential e&bmt), except for the single term arising from
the trivial rank l ¼ 0; bm ¼ 0 case. This term is equal to unity, and
one therefore arrives at the identical solution PeqðXÞ ¼ 1=8p2 as ob-
tained through consideration of Eq. (E63).

5. Rotational diffusion of rigid molecules in ordered solvents:
stationary uniaxial potential

We now turn our attention to diffusion within a non-zero order-
ing potential UðXÞ [46,47]. For simplicity, we consider an axially-
symmetric or uniaxial potential, the unique axis of which is re-
ferred to as the director. At present, we assume this frame is fixed
relative to the laboratory. We do not treat the more difficult case in
which the director is not stationary in the laboratory frame (this
phenomenon is commonly referred to as director fluctuation). The
current description corresponds physically to the diffusion of rigid
bodies in a liquid crystal solvent which is aligned at a constant an-
gle with the static magnetic field.

The simplest form for a uniaxial potential, known as the Maier–
Saupe potential [48], is given by

U ¼ UðXÞ
kBT

¼ Uð/Þ
kBT

¼ &c2 Dð2Þ
00 ðXÞ ¼ &c

2 3 cos2 /& 1
2

; ð190Þ

which may also be written in terms of the second order Legendre
polynomial (see Appendix D.2) as &c2P2ðcos/Þ. The constant c indi-
cates the strength of the potential and / is the angle between the
molecular axis and the director.

The solution to this problem is similar to that of the preceding
isotropic case. However, several additional steps are necessary as a
result of the non-zero ordering potential.

5.1. The diffusion equation and the rotational diffusion operators bR
and Ĉ

Recall Eq. (143):

@P

@t
¼ & bRP: ð191Þ

In the presence of the ordering potential, the form of R̂ is now (see
Eqs. (E50) and (E65)):

bR ¼ . 1þ eð Þ cL2
x þcLx cLxU

& '

op

( )

þ . 1& eð Þ cL2
y þcLy cLyU

& '

op

( )

þ .g cL2
z þcLz cLzU

& '

op

( )
; ð192Þ

where the ð. . . Þop notation is taken to mean that the terms ‘. . .’ in-
side parentheses are evaluated and then treated as a single opera-
tor, and

. 3 Dxx þ Dyy

2
;

e 3 Dxx & Dyy

Dxx þ Dyy
;

g 3 2Dzz

Dxx þ Dyy
:

ð193Þ

For the sake of convenience, we define a dimensionless diffusion
operator bC as

bC ¼ 1
.
bR: ð194Þ

We can now write the diffusion equation as

1
.
@P

@t
¼ &bCP: ð195Þ

5.2. Solving the diffusion equation

5.2.1. General solution
Writing the diffusion equation as Eq. (195) simplifies calcula-

tions somewhat, but in essence, the general solution is the same
as that for the case of diffusion in an isotropic liquid. The normal-
ized eigenfunctions of bC are obviously the same as those of R̂,
while the eigenvalues of bC are those of bR divided by .. Thus, the
solution to the diffusion equation is given by a modified form of
Eq. (145):

P ¼
X

m
W#

m X0ð ÞWm Xð Þe&.amt ; ð196Þ

where WmðXÞ are eigenfunctions of bC (and bR), with corresponding
eigenvalues am ¼ bm=..

5.2.2. Finding specific W#
mðXÞ and am

We proceed again by writing a matrix expression for the diffu-
sion operator bC in the basis of Wigner rotation functions, and solv-
ing the characteristic equation jĈ& am1j ¼ 0. To simplify
calculations, we consider an axially symmetric diffuser such that
Dxx ¼ Dyy ¼ D? and Dzz ¼ Dk (see Section 4.2.2.1) and work in the
principal axis frame of diffusion tensor.

5.2.2.1. The ~bCAxial and r2
Axial operators. As explained in detail in

Appendix E.4.2, it is convenient to perform calculations using a
symmetrized operator, ~bC (where the ‘tilde’ 4 above the operator
denotes that it has been symmetrized). From Eq. (E95), we have

~bCAxial ¼ r2
Axial þ

1
2

r2
AxialU

& '
& 1
4
cLþU
& '

cL&U
& '

& 1
4
g cLzU
& '2

;

r2
Axial ¼ cL

2
x þ L̂2

y þ gcL2
z :

ð197Þ

The axially-symmetric nabla-squared operator (see Eq. (E92))
may be written more conveniently by recognizing that
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r2
Axial ¼ cL

2
x þ L̂2

y þcL
2
z þ ðg& 1ÞcL2

z

r2
Axial ¼ cL

2 þ ðg& 1ÞcL2
z ;

ð198Þ

Employing the bra-ket notation jl; k; ji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1=8p2

p
DðlÞ

kj ðXÞ used
previously, we may therefore write (see Eq. (153)):

r2
Axial l; k; jj i ¼ l lþ 1ð Þ þ k2 g& 1ð Þ

h i
l; k; jj i: ð199Þ

5.2.2.2. Evaluation of individual ~bCAxial operator terms. In order to
compute the matrix elements of ĈAxial, we first need to evaluate
each term in parentheses in Eq. (197). In our bra-ket notation,
U ¼ &c2Dð2Þ

00 ðXÞ ¼ &c2j2;0;0i, and thus

r2
AxialU ¼ &c2 2ð3Þ þ 0½ + 2; 0;0j i ¼ &6c2 2;0;0j i

cLþU ¼ &c2
ffiffiffiffiffiffiffiffiffiffi
2ð3Þ

p
2;1;0j i ¼ &

ffiffiffi
6

p
c2 2;1;0j i

cL&U ¼ &c2
ffiffiffiffiffiffiffiffiffiffi
2ð3Þ

p
2;&1;0j i ¼ &

ffiffiffi
6

p
c2 2;&1;0j i

cLzU ¼ 0:

ð200Þ

Eq. (197) can be written more explicitly

~bCAxial ¼ r2
Axial &

1
2
&6c2 2;0;0j i
$ %

& 1
4
&

ffiffiffi
6

p
c2 2;1; 0j i

& '
&

ffiffiffi
6

p
c2 2;&1; 0j i

& '

~bCAxial ¼ r2
Axial þ 3c2 2;0;0j i &

3
2
c4 2;1; 0j i ) 2;&1;0j i;

ð201Þ

we may rewrite the vector product j2;1; 0i ) j2;&1;0i using the
formula

l1;m0
1;m1

!! 5
) l2;m0

2;m2
!! 5

¼
Xjl1þl2 j

l¼jl1&l2 j

C l1; l2; l;m0
1;m

0
2;m

0$ %,

(C l1; l2; l;m1;m2;mð Þ l;m0;mj i+; ð202Þ

where Cðl1; l2; l;m0
1;m

0
2;m

0Þ and Cðl1; l2; l;m1;m2;mÞ are Clebsch-Gor-
dan coefficients [49–51], and the sum includes all coefficients for
which m0

1 þm0
2 ¼ m0, m1 þm2 ¼ m; jm0j 6 l0 and jmj 6 l.

Therefore, we have

2;1;0j i ) 2;&1;0j i ¼
X4

l¼0

C 2;2; l;1;&1;0ð ÞC 2;2; l;0; 0;0ð Þ l;0;0j i:

ð203Þ

The non-zero coefficients Cð2;2; l;0;0; 0Þ with l values in the range
of the limits of the summation are

C 2;2;0;0;0;0ð Þ ¼ þ
ffiffiffiffiffiffiffiffi
1=5

p

C 2;2;2;0;0;0ð Þ ¼ &
ffiffiffiffiffiffiffiffi
2=7

p

C 2;2;4;0;0;0ð Þ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18=35

p
;

ð204Þ

and thus all terms in the summation for which l ¼ f1; 3g vanish.
Values of Cð2;2; l;1;&1; 0Þ for which l ¼ f0; 2; 4g are

C 2;2;0;1;&1;0ð Þ ¼ &
ffiffiffiffiffiffiffiffi
1=5

p

C 2;2;2;1;&1;0ð Þ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffi
1=14

p

C 2;2;4;1;&1;0ð Þ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffi
8=35

p
:

ð205Þ

Evaluation of Eq. (203) then yields

2;1;0j i ) 2;&1; 0j i ¼ &1
5

0;0; 0j i & 1
7

2;0; 0j i þ 12
35

4;0; 0j i: ð206Þ

The diffusion operator may then be written as
~bCAxial ¼ r2

Axial þ 3c2 2;0;0j i

þ c4
3
10

0;0;0j i þ
3
14

2;0;0j i &
18
35

4;0;0j i
" #

: ð207Þ

Combining like terms:

~bCAxial ¼ r2
Axial þ 3c2 1þ c2

14

" #
2;0;0j i þ

3c4

10
0;0;0j i &

18c4

35
4; 0;0j i:

ð208Þ

5.2.2.3. Matrix expression of ~bCAxial in the basis of Wigner rotation
functions. We are now in a position to calculate the individual ma-

trix elements of ~bCAxial:

~bCðDÞ
Axiall0 l;k0k;j0 j

¼ l0; k0; j0
4 !! ~bCAxial l; k; jj i: ð209Þ

Note that because of the vector products associated with
~bCAxialjl; k; ji, unlike the diffusion operator for isotropic solvents,

the diffusion operator ~bCAxial does mix Wigner basis functions of dif-
ferent rank (i.e. with l0 – l). This would complicate the current prob-
lem considerably as compared to the case in which there is no
ordering potential, and each l-subspace may be considered inde-
pendently. However, the absence of any raising or lowering opera-
tors in the final form of the axially symmetric rotational diffusion
operator prevents mixing in either k or j, as we shall demonstrate
shortly. Notice that this is not true for the most general case of fully
asymmetric diffusion (see Eq. (E94)), which does contain both rais-
ing and lowering operators. We do not consider the most general
case of the diffusion of a diffuser of arbitrary shape in an arbitrary
ordering potential. The reason for using this simplified model is jus-
tified due to two reasons: (1) the asymmetry in the rotational diffu-
sion tensor is generally small and ignored in most NMR studies of
biomolecules, (2) the liquid crystalline media used for most studies
of biomolecules to measure residual dipolar couplings (RDCs) con-
sist of nematic liquid crystals with a unique director [52–54]. Thus,
the case considered here is likely to be the most general in the con-
text of biological NMR.

It is easiest to handle the calculations by considering each of the
four diffusion operator terms (which we will denote as
~bCterm 1

Axial . . .
~bCterm 4

Axial

n o
) separately, and adding the results together at

the end. We see directly from Eq. (199) that for the first term,
~bCterm 1

Axial ¼ r2
Axial,

l0; k0; j0
4 !! ~bCterm 1

Axial l; k; jj i ¼ l lþ 1ð Þ þ k2 g& 1ð Þ
h i

dl0 ldk0kdj0j: ð210Þ

For the next term, ~bCterm 2
Axial ¼ 3c2ð1þ c2=14Þj2;0;0i, the ‘matrix ele-

ment’ is:

3c2 1þ c2

14

" #
l0; k0; j0
4 !! 2;0; 0j i ) l; k; jj i; ð211Þ

where the vector product j2;0;0i ) jl; k; ji may be written as

2;0;0j i ) l; k; jj i ¼
X2þl

L¼j2&lj

C 2; l; L;0; k; kð ÞC 2; l; L;0; j; jð Þ L; k; jj i: ð212Þ

The element is then

l; k; jh j ~bCterm 2
Axial l0; k0; j0

!! 5
¼ 3c2 1þ c2

14

" #

(
X2þl

L¼j2&lj

C 2; l; L;0; k; kð ÞC 2; l; L;0; j; jð Þdl0Ldk0kdj0 j:

ð213Þ
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For the next term, ~bCterm 3
Axial ¼ 3c4

10 j0; 0;0i, the ‘matrix element’ is

3c4

10
l0; k0; j0
4 !! 0;0; 0j i ) l; k; jj i; ð214Þ

and recognizing that j0;0;0i ¼ 1, this element is simply

l0; k0; j0
4 !! ~bCterm 3

Axial l; k; jj i ¼
3c4

10
dl0 ldk0kdj0j: ð215Þ

Finally, for the fourth term, ~bCterm 4
Axial ¼ 18c4

35 j4;0;0i, the element is

&18c4

35
l0; k0; j0
4 !! 4;0; 0j i ) l; k; jj i; ð216Þ

and we may write the vector product j4;0;0i ) jl; k; ji as

4;0;0j i ) l; k; jj i ¼
X4þl

L¼j4&lj

C 4; l; L; 0; k; kð ÞC 4; l; L; 0; j; jð Þ L; k; jj i: ð217Þ

Thus,

l0; k0; j0
4 !! ~bCterm 4

Axial l; k; jj i ¼ &
18c4

35

(
X4þl

L¼j4&lj

C 4; l; L; 0; k; kð ÞC 4; l; L;0; j; jð Þdl0Ldk0kdj0 j:

ð218Þ

Now that we have evaluated the contribution of each term sep-
arately, we may write the full matrix expression for the diffusion
operator as

~bCðDÞ
Axiall0 l;k0k;j0 j

¼
X4

n¼1
l0;k0;j0
4 !! ~bCterm n

Axial l;k;jj i

¼dk0kdj0 j

l lþ1ð Þþk2 g&1ð Þ
h i

dl0 l þ 3c2 1þ c2
14

& ' P2þl

L¼j2&lj
C 2; l;L;0;k;kð ÞC 2; l;L;0;j;jð Þdl0L

þ 3c4
10 dl0 l &

18c4
35

P4þl

L¼j4&lj
C 4; l;L;0;k;kð ÞC 4; l;L;0;j;jð Þdl0L

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

:

ð219Þ

This is the equivalent of Eq. (158) for an axially symmetric dif-
fuser in a uniaxial potential. However, the explicit evaluation of

matrix elements of ~bCðDÞ
Axial is far more complex. Thus, obtaining

the eigenvectors and eigenvalues is best done numerically, rather
than analytically as in the simpler case of bRðDÞ

Axial in Section 4.

6. Calculation of relaxation rates

6.1. Relaxation rates in Liouville basis

Following the derivation of the Redfield equation of relaxation
(Section 2), the presentation of the Hamiltonian operators of inter-
actions contributing to relaxation (Section 3), and the treatment of
rotational diffusion (Sections 4 and 5), the calculation of relaxation
rates in the Liouville basis is now straightforward.

Although the calculation of the Redfield equation of relaxa-
tion (Section 2.3) was useful for the introduction of concepts,
it will now be more convenient to derive relaxation rates while
employing the product operator formalism (Section 2.1.3). Our
starting point will be Eq. (62) and the expressions of the Hamil-
tonian operators of interactions contributing to relaxation found
in Section 3.

We use Eq. (101) to describe each contribution to cHðtÞ. Assum-
ing as before that the time dependence lies in spatial operators, we
have

cHlðtÞ ¼ nl
X2

l¼0

Xþl

m¼&l

ð&1ÞmF&ml ðtÞTm
l ; ð220Þ

where Fl
mðtÞ is a function of spatial variables, Tm

l is a tensor spin
operator. They satisfy the properties:

T&ml ¼ ðTm
l Þ

#; F&ml ¼ ðFm
l Þ

#: ð221Þ

It is possible to expand Tm
l in a basis of the commutation super-

operator ccH0 (a superoperator is an operator that acts in a linear
vector space formed by a set of operators; see for example refer-
ence [24]), where

Tm
l ¼

X

p

Tmp
l ¼

X

p

cðlÞp cHp ð222Þ

½cH0;cHp+ ¼
ccH0cHp ¼ xpcHp: ð223Þ

The xp are the eigenfrequencies of the Hamiltonian cH0. Eq.
(223) implies:

expð&icH0tÞcHp expðicH0tÞ ¼ expð&ixptÞcHp: ð224Þ

When Eq. (224) is applied in the interaction frame one obtains

Tm
l ¼ expficH0tgTm

l expf&icH0tg

¼
X

p

expficH0tgTmp
l expf&icH0tg ¼

X

p

Tmp
l expfixptg: ð225Þ

T&ml ¼ expficH0tgT&ml expf&icH0tg

¼
X

p

expficH0tgT&mp
l expf&icH0tg

¼
X

p

T&mp
l expf&ixptg: ð226Þ

Using Eqs. (220), (225) and (226) combined with Eq. (62) one
obtains (where we have written qeqðTLÞ as qeq for notational
simplicity):

@ ~̂qðtÞ
@t

¼&n2
X2

l¼0

X

m;m0

X

p;p0
expfið&xp0 þxpÞtg Tm0p0

l ; Tmp
l ; ~̂qðtÞ& ~̂qeq

h ih i

(
Z 1

0
F&m

0

l ðtÞFm
l ðtþsÞexpf&ixpsgds; ð227Þ

where we assume, for the sake of clarity, that only one interaction
contributes to relaxation. More complete expressions are provided
below. The imaginary parts of Eq. (227), which are also called dy-
namic frequency shift (see Section 2.3.3), are the second-order fre-
quency shifts of resonance lines that are included in cH0.

The real part of Eq. (227) can be written as:

@ ~̂qðtÞ
@t

¼ & n2
X2

l¼0

X

m;m0

X

p;p0
expfið&xp0 þxpÞtg

( Tm0p0

l ; Tmp
l ; ~̂qðtÞ & ~̂qeq

h ih i
jml ðxpÞ; ð228Þ

where the power spectral density function jml ðxpÞ is:

jml ðxpÞ ¼ Re
Z 1

&1
F&ml ðtÞFm

l ðt & sÞ expf&ixpsgds;

jml ðxpÞ ¼ Re
Z 1

&1
Fm
l ðtÞF

&m
l ðt þ sÞ expf&ixpsgds:

ð229Þ

Note that:

jml ðxÞ ¼ ð&1Þ
mj0l ðxpÞ ¼

1
2
ð&1ÞmJlðxÞ: ð230Þ

Thus we only need to calculate the spectral density function for
m ¼ 0 [55].
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The time dependence of Fm
l ðtÞ for a rigid molecule comes only

from the transformation from an arbitrary molecular basis frame
to the laboratory frame, which is to say from molecular tumbling.
Making use of Eqs. (96) and (100), we can write:

jml ðxpÞ

¼Re
Z þ1

&1

Xl

m0¼&l

Xl

m00¼&l

Dl#
m;m0 ðXðtÞÞFm0

l ðAAFÞD
l#
&m;m00 ðXðtþsÞÞFm00

l ðAAFÞexpð&ixpsÞds:

ð231Þ

We now use Eq. (C12) to link the correlation functions to the
orientation probability of the molecule:

jml ðxpÞ ¼ Re
Z þ1

&1

Xl

m0¼&l

Xl

m00¼&l

ð&1Þm&m
0

(
Z

X

Z

X0

Dl
m;m0 ðXðtÞÞDl#

&m;m00 ðXðt þ sÞÞPeqðX0ÞPðX; sjX0Þ

( Fm0

l ðAAFÞF
m00

l ðAAFÞ expð&ixpsÞds;
ð232Þ

where the orientations X; X0 have been defined in Eqs. (C7)–(C9).
The probability PðX; sjXÞ is expressed in Eq. (147) and the

equilibrium probability can be found in Eq. (188):

jml ðxpÞ ¼ Re
Z þ1

&1

X

m

X

m0 ;m00

X

s;r;r0

X

u;v;v 0

ð&1Þm&m
0

ð8p2Þ2

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2sþ 1Þð2uþ 1Þ

p
csm;r;r0c

u
m;v;v 0e&bmse&ixps

(
Z

X
Dl#
&m;m00 ðXÞDu

v;v 0 ðXÞdX
Z

X0

Dl
&m;m0 ðX0ÞDs#

r;r0 ðX0ÞdX0

( Fm0

l ðAAFÞF
m00

l ðAAFÞds:

ð233Þ

We now use the orthogonality relationship for Wigner func-
tions Eq. (D87):

jml ðxpÞ ¼ Re
Z þ1

&1

X

m

X

m0 ;m00

X

s;r;r0

X

u;v;v 0

ð&1Þm&m
0

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2sþ 1Þð2uþ 1Þ

p

ð2sþ 1Þð2uþ 1Þ
csm;r;r0c

u
m;v;v 0e&ðbmþixpÞs

( d&m;vdm00 ;v 0dl;ud&m;rdm0 ;r0dl;sF
m0

l ðAAFÞF
m00

l ðAAFÞds; ð234Þ

so that

jml ðxpÞ¼Re
Z þ1

&1

X

m

X

m0 ;m00

ð&1Þm&m
0

2lþ1
clm;&m;m0 cl&m;m00e&ðbmþixp ÞsFm0

l ðAAFÞF
m00

l ðAAFÞds:

ð235Þ

Performing the Fourier transform, we finally obtain:

jml ðxpÞ¼
X

m

X

m0 ;m00

ð&1Þm&m
0

2lþ1
clm;&m;m0 clm;&m;m00Fm0

l ðAAFÞF
m00

l ðAAFÞ2
bðlÞm

ðbðlÞm Þ
2þx2

p

:

ð236Þ

It has been assumed that the random processes Fm
l ðtÞ and Fm0

l ðtÞ
are statistically independent unless m0 ¼ &m, which results in a
vanishing ensemble average in Eq. (227). Thus we can use a single
index cðlÞm;m for the coefficients. The bðlÞm and cðlÞm;m have been defined in
Section 4.2.1.3.

Terms in Eq. (228) for which xp &xp0 – 0 are nonsecular (with
few unusual exceptions) and they do not affect the long-term
behavior of ~̂qðtÞ. When none of the eigenfrequencies are degener-
ate, the terms in Eq. (228) are secular and nonzero only if p ¼ p0,
which yields:

@ ~̂qðtÞ
@t

¼ &n2
X2

l¼0

X

m

(
X

p

T&mp
l ; Tmp

l ; ~̂qðtÞ & ~̂qeq

h ih i
ð&1Þmjml ðxpÞ: ð237Þ

Now, the isotropic l ¼ 0 terms do not contribute to relaxation;
the l ¼ 1 are non-zero for CSA (see Section 3.1.2) but we have cho-
sen to neglect them. The only relevant terms are the l ¼ 2 terms in
Eq. (237). Thus we have:

@ ~̂qðtÞ
@t

¼ &n2
X

m

X

p

T&mp
2 ; Tmp

2 ; ~̂qðtÞ & ~̂qeq

h ih i
ð&1Þmjm2 ðxpÞ: ð238Þ

Using Eq. (230), replacing j2ðxÞ by JðxpÞ, and dropping the subscript
in J2ðxpÞ since l ¼ 2 is assumed:

@ ~̂qðtÞ
@t

¼ &1
2
n2
X

m

X

p

T&mp
2 ; Tmp

2 ; ~̂qðtÞ & ~̂qeq

h ih i
JðxpÞ: ð239Þ

This equation can be transformed back into the laboratory frame to
obtain a modified version of the Liouville-von Neuman equation
taking into account relaxation.

@q̂ðtÞ
@t

¼ &i½cH0; q̂ðtÞ+ &
bbRðq̂ðtÞ & q̂eqÞ: ð240Þ

The relaxation superoperator bbR is given by

bbR ¼ 1
2
n2
X

m

X

p

ðT&mp
2 Þ; ðTmp

2 Þ;
, -, -

JðxpÞ: ð241Þ

The stochastic Hamiltonian will contribute to relaxation under
two conditions as can be seen in Eq. (240): (1) the double commu-
tator cannot be zero and (2) the spectral density function must
have a significant value at the characteristic frequencies xp of
the spin system.

Using the basis of product operators (see Eq. (28)), we have the
matrix form of the master equation in Liouville space:

@brðtÞ
@t

¼
X

s

&ixrsbsðtÞ & RBr ;Bs bsðtÞ & b0
s

h in o
; ð242Þ

with the frequency xrs:

xrs ¼
bBr

D
cH0; bBs

h i!!!
E

bBr bBr

!!!
ED : ð243Þ

The relaxation rate RBr ;Bs between the operators bBr and bBs can
be calculated as:

RBr ;Bs ¼

D
bBr j
bbR j bBs

E

bBrk bBr

D E ;

RBr ;Bs ¼
ð&1Þm

2
n2
X

m

X

p

bBr

D
T&m2p ; Tm

2p; bBs

h ih i!!!
E

bBr

D !!! bBr

E

0

B@

1

CAJðxpÞ: ð244Þ

When basis operators are normalized, TrfB2
r g ¼ TrfB2

s g. When
r ¼ s, the diagonal element RBr ;Br is called the auto-relaxation rate
of Br , whereas for r – s, the off diagonal element RBr ;Bs is called
the cross-relaxation rate between B̂r and B̂s.

Eq. (240) has been derived assuming that all terms appear from
the same interaction l. However, as seen from Eq. (101) interfer-
ence terms may occur when for two different sets of interactions
l and l0 (with l – l0) take place. In such a case Eq. (240) trans-
forms to:
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d ~̂qðtÞ
dt

¼ &1
2

X

l;l0

nlnl0

X

m

(
X

p

ðT&mp
2 Þl0 ; ðTmp

2 Þl0 ; ~̂qðtÞ & ~̂qeq

h ih i
ð&1ÞmJll

0
ðxpÞ;

ð245Þ

when l– l0; Jll
0
ðxpÞ is the cross-correlation spectral density

function.
Following similar steps as before we have the equivalent of Eq.

(244)

Rll
0

Br ;Bs ¼
1
2
nlnl0

X

m

(
X

p

bBr

D
T&mp
2

$ %
l; ðT

mp
2 Þl0 ; bBs

h ih i!!!
E

bBrj bBr

D E

0

@

1

Að&1ÞmJll
0
ðxpÞ:

ð246Þ

Rll
0

rs is the cross-correlated cross-relaxation rate between bBr and
bBs. Thus transforming back into the LAB frame (see Eq. (240)), in
general we have:

dq̂ðtÞ
dt

¼ &i H0; q̂ðtÞ½ + &
X

l;l0

bbRll0 q̂ðtÞ & q̂eq
$ %

; ð247Þ

where the matrix elements Rll
0

Br ;Bs of
bbRll0 are given by Eq. (246).

6.2. Relaxation for a two-spin system

For a two-spin system (I;S) the 16-dimensional Liouville
space leads to a 256-element relaxation superoperator. If the nor-
malized identity basis vector, 1

2 1̂, were to be ignored the resultant

15 ( 15 matrix representation of bbR is symmetric, i.e. RBr ;Bs ¼ RBs ;Br .
While we neglect the identity basis vector in the current discus-
sion, its inclusion makes the relaxation superoperator singular,
but is required to predict the correct steady state. Several publica-
tions have discussed the so-called homogeneous superoperator
that includes the identity [26–29]. Thus, one needs to calculate
15 diagonal and 105 off-diagonal elements. However, many off-
diagonal terms are nonsecular, e.g. double-quantum terms cross-

relax with double-quantum terms only, so that bbR is block-diago-
nal: the so-called Redfield kite [24]. For the non-zero terms we
present explicit calculations for three representative terms.

Remembering the definitions of the spin tensors derived in Sec-
tion 3, we can calculate the double commutators ½T&mp

2 ; ½Tmp
2 ;Iz++.

These terms Tmp
2 can be obtained from Eq. (137), realizing

Tm
2 ¼ &2X

m
2 .

Looking at Table 1, it is clear why each term Tm
2 was split into

constituent Tmp
2 . The Tm

2 term, for example, contains the so-called
longitudinal two-spin order component,IzSz, which has an eigen-
value of zero under the static Hamiltonian cH0, and also the zero-
quantum ‘flip-flop’ terms T01

2 and ðT01
2 Þ

# that have eigenvalues
$ðxI &xSÞ.

Similarly, we can obtain Tmp
2 for the CSA interaction by using Eq.

(117). These are shown in Table 2.

Having written the Tmp
2 for the major interactions, we are now

ready to derive the matrix elements of the relaxation superopera-
tor bbR . Other excellent treatises [2] are available which provide
expressions for most matrix elements of bbR . This review is designed
to provide a general method to calculate relaxation rates, so we
will only present three representative examples.

6.2.1. Auto-correlated relaxation
We first present the derivation of RIþ ;Iþ , referred to as the spin-

spin (or transverse) relaxation rate, R2, which is an auto-relaxation
rate. In Eq. (246):

bBs

!!!
E
¼ Iþ;

bBr

D !!! ¼ bBy
r ¼ ðIþÞy ¼ I&: ð248Þ

6.2.1.1. DD contribution. For the auto-correlated contribution, i.e.
l ¼ l0 ¼ DD in Eq. (246), we first consider the relevant commuta-
tion operations term-by-term.

ðT&mp
2 ÞDD; ðT

mp
2 ÞDD;Iþ

, -, -
: ð249Þ

Term 1: T00
2

T00
2 ; T00

2 ;Iþ

h ih i
¼ 4ffiffiffi

6
p

" #2

IzSz; IzSz;Iþ½ +½ + ¼ 8
3
( 1
4
Iþ ¼

2
3
Iþ:

ð250Þ

Taking the trace of the right-hand side and dividing by the nor-
malization term, with ðTþÞþ ¼ T& we have for term 1:

2
3
TrfI&Iþg
TrfI&Iþg

¼ 2
3
: ð251Þ

Thus, multiplying by the corresponding JðxpÞ, we have the contri-
bution of term 1:

ð&1Þ0 2
3

Jð0Þ ¼ 2
3
Jð0Þ: ð252Þ

Now consider the other terms of Table 1 one-by-one:

T&012 ; T01
2 ;Iþ

h ih i
¼0 Term2!0;

T01
2 ; T&012 ;Iþ

h ih i
¼1
6
Iþ Term3!ð&1Þ0 JðxI&xSÞ(

1
6
¼1
6
JðxI&xSÞ;

T&102 ; T10
2 ;Iþ

h ih i
¼&1

2
Iþ Term4!ð&1Þ1 JðxSÞ( &1

2

" #
¼1
2
JðxSÞ;

T10
2 ; T&102 ;Iþ

h ih i
¼&1

2
Iþ Term5!ð&1Þ&1 JðxSÞ( &1

2

" #
¼1
2
JðxSÞ;

T&112 ; T11
2 ;Iþ

h ih i
¼0 Term6!0;

T11
2 ; T&112 ;Iþ

h ih i
¼&1

2
Iþ Term7!ð&1Þ&1 JðxIÞ( &1

2

" #
¼1
2
JðxIÞ;

T&202 ; T20
2 ;Iþ

h ih i
¼0 Term8!0;

T20
2 ; T&202 ;Iþ

h ih i
¼Iþ Term9!ð&1Þ&2JðxIþxSÞ( 1¼ JðxIþxSÞ:

ð253Þ

Summing all terms, we find the contribution of dipole-dipole auto-
correlation to the transverse relaxation rate to be:

Table 1
Tensor operators for the spin part of the dipole-dipole interaction.

m p Tmp
l T&mp

l ¼ Tmp#
l

xp

0 0 &4ffiffi
6

p
& '

IzSz
&4ffiffi
6

p
& '

IzSz
0

0 1 1ffiffi
6

p IþS&
1ffiffi
6

p I&Sþ xI &xS

1 0 IzSþ &IzS& xS

1 1 IþSz &I&Sz xI

2 0 &IþSþ &I&S& xI þxS

Table 2
Tensor operators for the spin part of the chemical shift anisotropy (CSA).

m p Tmp
l T&mp

l ¼ Tmp#
l

0 0 & 4ffiffi
6

p Iz & 4ffiffi
6

p Iz

1 0 Iþ &I&
2 0 – –
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2
3
Jð0Þ þ 1

6
JðxI &xSÞ þ 2

1
2
JðxSÞ þ

1
2
JðxIÞ þ JðxI þxSÞ

¼ 1
6

4Jð0Þ þ JðxI &xSÞ þ 6JðxSÞ þ 3JðxIÞ þ 6JðxI þxSÞð Þ:

ð254Þ

The dipole–dipole contribution to RIþ ;Iþ becomes:

RDD
Iþ ;Iþ ¼

1
2
n02DD

1
6

4Jð0Þ þ JðxI &xSÞ þ 6JðxSÞ þ 3JðxIÞ þ 6JðxI þxSÞð Þ;

ð255Þ

where for constant rIS

n0DD ¼
l0

4p
& ' ffiffiffi

3
2

r
cIcS!h
r3IS

; ð256Þ

and thus, we have:

RDD
Iþ ;Iþ ¼

1
8

l0

4p
& '2 c2I c2S!h

2

r6IS
4Jð0Þ þ JðxI &xSÞ þ 6JðxSÞ þ 3JðxIÞð

þ 6JðxI þxSÞÞ:
ð257Þ

6.2.1.2. CSA contribution. Next we consider the CSA of spin I to be
finite and axially symmetric. Using Table 2 we obtain:

Term 1: T00
2

T00
2 ; T00

2 ;Iþ

h ih i
¼ 8

3
Iz; Iz;Iþ½ +½ + ¼ 8

3
Iþ: ð258Þ

Leading to a contribution of ð&1Þ0 Jð0Þ ( 8
3 ¼

8
3 Jð0Þ.

T&002 ; T00
2 ;Iþ

h ih i
¼0 Term2!0;

T00
2 ; T&002 ;Iþ

h ih i
¼2Iþ Term3!ð&1Þ0 JðxIÞ(2¼2JðxIÞ: ð259Þ

Thus the total contribution from the CSA becomes:

RCSA
Iþ ;Iþ ¼

1
2
n02CSA;I

2
3

4Jð0Þ þ 3JðxIÞð Þ: ð260Þ

with

n0CSA;I ¼
DrIcIB0ffiffiffi

6
p ; ð261Þ

thus we have:

RCSA;I
Iþ ;Iþ ¼

Dr2
I c2I B

2
0

18
4Jð0Þ þ 3JðxIÞð Þ: ð262Þ

Finally, we have:

RIþ ;Iþ ¼ RDD
Iþ ;Iþ þ RCSA;I

Iþ ;Iþ ð263Þ

thus

RIþ ;Iþ ¼
1
8

l0

4p
& '2 c2I c2S!h

2

r6IS
4Jð0Þ þ JðxI &xSÞ þ 6JðxSÞ þ 3JðxIÞð

þ 6JðxI þxSÞÞ þ
Dr2

I c2I B
2
0

18
4Jð0Þ þ 3JðxIÞð Þ:

ð264Þ

Following the derivation of an auto-correlated auto-relaxation
rate, we now provide an example of auto-correlated cross-relaxa-
tion, choosing the operators bBr and bBs to be Sz and Iz, respec-
tively. We evaluate each term in Eq. (246) and find that non-zero
commutators arise from the term T01

2 and its complex conjugate,
thus

T&012 ; T01
2 ;Iz

h ih i
¼ 1

6
ðIz &SzÞ ð265Þ

and

Szh T&012 ; T01
2 ;Iz

h ih i!!!
E

SzjSzh i
¼ 1

6
Szh Iz &Szj i

SzjSzh i
¼ &1

6
: ð266Þ

The term, T01
2 , contributes ð&1Þ0 JðxI &xSÞ ( ð& 1

6Þ ¼
& 1

6 JðxI &xSÞ. A similar contribution comes from the correspond-
ing complex conjugate making the total contribution & 1

3 JðxI&
xSÞ. The only other contributions come from terms corresponding
to row 5 of Table 1. This contribution is 2JðxI þxSÞ. Thus we
have:

RSz ;Iz ¼
1
2
n02DD

1
3
&JðxI &xSÞ þ 6JðxI þxSÞð Þ ð267Þ

which for constant intermolecular distance rIS:

RSz ;Iz ¼
1
4

l0

4p
& '2 c2I c2S!h

2

r6IS
&JðxI &xSÞ þ 6JðxI þxSÞð Þ: ð268Þ

RSz ;Iz is related to the so-called steady-state NOE in the following
way:

NOE ¼ 1þ RSz ;Iz

RIz ;Iz

cS
cI

: ð269Þ

6.2.2. Cross-correlated relaxation
Finally, we derive the cross-correlated cross-relaxation rate, due

to the interference between the dipolar interactions of theI andS

spins (l ¼ DD) and CSA (l0 ¼ CSA) interactions of the I spin
[56,57]. From the secular approximation, the only non-zero contri-
bution to CIz ;2IzSz corresponds to the contributions of row 4 in Table
1 and row 2 in Table 2:

ðT&102 ÞDD; ðT
11
2 ÞCSA;2IzSz

h ih i
¼ & I&Sz; Iþ;2IzSz½ +½ +

¼ & I&Sz;2IþSz½ +

¼ &2S2
z I&;Iþ½ + ¼ 4S2

zIz ¼ Iz:

ð270Þ

Taking the trace with Iz and multiplying by the corresponding
spectral density term, we obtain a contribution of ð&1Þ1Jll

0
ðxIÞ.

Considering the three other combinations of ðT&102 ÞDD; ðT
11
2 ÞCSA;

ðT10
2 ÞDD and ðT&112 ÞCSA we have a total contribution of &4JðxIÞ. In

the limit of isotropic overall tumbling and an axially symmetric
CSA tensor for I;RIz ;2Izz is given by

RIz ;2IzSz ¼ &
1
2
n0DDn

0
CSA4J

ll0
ðxIÞ

¼ & l0

4p
& ' c2I cS!h

r3IS
B0DrI

ð3cos2h& 1Þ
2

JðxIÞ; ð271Þ

where

Jll
0
ðxIÞ ¼

ð3cos2h& 1Þ
2

JðxIÞ; ð272Þ

and h is the angle between the IS dipolar vector and the unique
axis of the CSA tensor of spin I.

7. Conclusions

We have provided a unified, self-consistent description of the
microscopic (quantum) interactions that influence dynamics in
spin-space for an ensemble of spin-1/2 particles, as well as
the real-space effects of the macroscopic (classical) global rota-
tional diffusion determined both by molecular shape and the
nature of the solvent, and finally the combined effects of the
two on the spin-relaxation rates measured by NMR spectrosco-
pists. The measurement of amide 15N spin-lattice (R1), spin–spin
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(R2) and the steady-state NOE with the attached hydrogen has
become routine for practitioners of biomolecular NMR spectros-
copy, both expert as well as non-expert [58–60]. These rates
can be used to determine the underlying spectral density func-
tions and to interpret them using the Lipari-Szabo formalism
(the so-called ‘model-free’ approach) that relies on the separa-
tion of the global rotational diffusion and local dynamics on
single [61,62] or multiple timescales [63,64]. This separation is
formally possible only for isotropic overall diffusion in an iso-
tropic medium and is thus not covered here. Good approxima-
tions can be used for auto-correlated relaxation in the case of
weakly anisotropic diffusion. All spectral density functions in
this review have been derived assuming that the spin-system
under consideration is rigidly attached to the biomolecule and
that the only motion results from the overall rotational diffu-
sion. The reader is referred to the original papers [61,62] or
pedagogical treatises [2,65] on the topic for further details. It
is to be mentioned here that alternative approaches that do
not require such a separation have also been proposed, but
have not yet been widely applied [66,67].

In this review, we have chosen not to derive detailed expres-
sions for all possible matrix elements of the 16-component relax-
ation superoperator for a simple two spin-1/2 system, providing
three illustrative calculations instead. The general expressions pro-
vided here should allow the reader to calculate the relaxation rates
for the remaining elements. In recent years, a wide array of sophis-
ticated pulse sequences have been developed to measure a large
number of these matrix elements, i.e. auto-relaxation and cross-
relaxation rates of different sets of coherences. The reader is re-
ferred to the excellent book by Cavanagh et al. [2] and the refer-
ences therein for examples.

Most results presented here are available, in varying levels of
detail, throughout dispersed literature. It is hoped that our detailed
derivations and presentation in a consistent formalism will be
helpful for a more general understanding of the origins, approxi-
mations, and theoretical underpinnings of spin-relaxation in iso-
tropic and anisotropic media.
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Appendix A. Miscellaneous theorems

We present here some theorems that will be of use in deriving
some of the expressions provided in the text.

A.1. Operator exponentials

The exponential ekbAt of an operator cA can be written as a Tay-
lor series,

ekbAt ¼
X1

n¼0

ðktÞncAn

n!
: ðA1Þ

The time derivative is given by

@

@t
ekbAt ¼

X1

n¼1

kntn&1cAn

n!
ðA2Þ

so that:

@

@t
ekbAt ¼ kcAekbAt ¼ ekbAtkcA: ðA3Þ

If jki is the eigenstate and E is the eigenvalue of an operator, i.e.

cA kj i ¼ E kj i ðA4Þ

by using Eq. (A1) one can show:

eikbA kj i ¼ eikE kj i: ðA5Þ

A.2. Properties of the commutator

A.2.1. Unitary operator–commutator product
Let bU be an unitary operator ( bUy bU ¼ bU bUy ¼ 1̂), and cA and bB

denote arbitrary operators. Then we may write:

bU cA; bB
h i

bUy ¼ bUcA bUy; bU bB bUy
h i

: ðA6Þ

A.2.2. ‘Distributivity’ of the commutator
We employ the following in Section A.5. For any three operators

cA; bB, and bC

cA þ bB; bC
h i

¼ cA; bC
h i

þ bB; bC
h i

: ðA7Þ

A.3. Interaction representation for cH1ðtÞ

The Hamiltonian for relaxation interactions is given by the fol-
lowing in the interaction representation:

fcH1ðtÞ ¼ eibH0tcH1ðtÞe&i
bH0t ¼ eibH0t

X

l

cHlðtÞe&i
bH0t

¼
X

l
eibH0tcHlðtÞe&i

bH0t ¼
X

l

fcHlðtÞ: ðA8Þ

A.4. Change of representation: similarity and unitary transformations

A.4.1. Change of basis by a linear transformation
Let cS denote a linear, invertible (non-singular, i.e. detðSÞ – 0)

operation that transforms one basis set B ¼ fjiBig spanning an n-
dimensional Hilbert space H into another set of n vectors
C ¼ fjiCig that are also in H. For all the vectors in each basis set,
we have

cS iBj i ¼ iCj i cS&1 iCj i ¼ iBj i: ðA9Þ

Any vector jvi in H may be written in the basis B as an expan-
sion jvi ¼

Pn
i¼1v

ðBÞ
i jiBiwhere v ðBÞi is the ith component of jvi in the

basisB (analogous expressions hold for any other basis). SincecS is
linear, jwi ¼cS&1jvi is an element of H, and it follows that

wj i ¼cS&1 vj i ¼
Xn

i¼1

wðBÞ
i iBj i;

vj i ¼cS wj i ¼
Xn

i¼1
wðBÞ

i
cS iBj i ¼

Xn

i¼1
wðBÞ

i iC;j i
ðA10Þ

where the last expression has the same form as the expansion of a
vector in a basis set. Thus, since jvi is an arbitrary vector, C forms a
basis for H, and any linear, invertible transformation may be re-
garded simply as a change of basis.

Given that B and C form bases for H, we may write

vj iðBÞ ¼SðBÞ vj iðCÞ;

vj iðCÞ ¼SðBÞ&1 vj iðBÞ;
ðA11Þ

where SðBÞ denotes the matrix representation of cS in the basis
B, and jviðBÞ and jviðCÞ denote the column-vector representations
(i.e. the list of components) of the vector jvi in bases B and
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C, respectively. We thus have clear rules for how vector compo-
nents transform under a change of basis.

A.4.2. Transformation of operators under a change of basis: similarity
transformations

We now determine how operator elements transform under a
change of basis. Consider the general operator (basis-independent)
equation jui ¼ cAjvi, where cA is an arbitrary operator. We may
write in each of the two bases B and C

uj iðBÞ ¼AðBÞ vj iðBÞ ðA12Þ

and

uj iðCÞ ¼AðCÞ vj iðCÞ: ðA13Þ

Using the first of Eqs. (A11), we may write Eq. (A12) as

SðBÞ uj iðCÞ ¼AðBÞSðBÞ vj iðCÞ;

uj iðCÞ ¼SðBÞ&1AðBÞSðBÞ vj iðCÞ:
ðA14Þ

Comparing Eqs. (A14) and (A13), we see that

AðCÞ ¼SðBÞ&1AðBÞSðBÞ; ðA15Þ

and through application of analogous logic to Eq. (A13) and compar-
ison to Eq. (A12)

AðBÞ ¼SðBÞAðCÞSðBÞ&1 : ðA16Þ

Eqs. (A15) and (A16) are called similarity transformations, and are
mathematical formulations of a result that is intuitively obvious:
the action of an operator in a given (arbitrary) basis may be divided
into the following steps: (1) transform the vector (operand) into a
basis where the matrix representation of the operator is known,
(2) operate on the transformed vector using the matrix representa-
tion of the operator in that basis, (3) transform the vector (modified
by the operator) back into the original basis.

Similarity transformations are useful when converting matrices
into convenient forms for computation (e.g. changing to a basis in
which the matrix representation of a given operator is diagonal, as
in the the principal axis frame of the diffusion tensor). As should be
expected from a change of representation, basis-independent oper-
ator properties are constant among the various matrix representa-
tions produced through similarity transformations. Of particular
interest, similarity transformations conserve the value of the
determinant

AðCÞ!! !! ¼ SðBÞ&1
!!!

!!! AðBÞ!! !! SðBÞ!! !! ¼ SðBÞ&1SðBÞ
!!!

!!! AðBÞ!! !! ¼ AðBÞ!! !!;

ðA17Þ

where we have employed the relation jABj ¼j AjjBj. Therefore, a
similarity transformation leaves the characteristic polynomial
unchanged

AðCÞ & k1ðCÞ
!! !! ¼ SðBÞ&1AðBÞSðBÞ &SðBÞ&1k1ðBÞSðBÞ

!!!
!!! ¼ AðBÞ & k1ðBÞ

!! !!

ðA18Þ

and thus the eigenvalues of AðBÞ and AðCÞ are the same (though the
column eigenvectors generally are not). This feature allows us to
represent operators (or tensors) in an arbitrary interaction frame
(AAF), and then transform into other frames (PAF, LAB, etc.), while
preserving eigenvalues, norms, etc. Finally, the trace is preserved

Tr AðCÞ$ %
¼
Xn

i¼1
AðCÞ

ii ¼
Xn

i;j;k¼1

SðBÞ&1
& '

ij
AðBÞ

jk SðBÞ
ki

¼
Xn

j;k¼1

djkA
ðBÞ
jk ¼

Xn

k¼1

AðBÞ
kk ¼ Tr AðBÞ$ %

: ðA19Þ

A.4.3. Unitary transformations: rotations
A special class of similarity transformation is the unitary trans-

formation, for which cS ¼ bU, with bUy bU ¼ bU bUy ¼ 1̂ (that is,
bU&1 ¼ bUyÞ. We may write

iCj i ¼ bU iBj i;

iC j jCh i ¼ iBh j bUy bU jBj i ¼ iB j jBh i;
ðA20Þ

from which we see that under a unitary transformation of a basis
set, the magnitudes of the basis vectors are maintained (the i ¼ j
cases), and the projections of each basis vector on to every other
one also remain constant (the i – j cases). Geometrically, this im-
plies that the lengths of the basis vectors and the ‘angles’ between
all of them are preserved under unitary transformations. Such
transformations therefore describe simple rotations, like the trans-
formation from the laboratory (LAB) to the principal axes frame
(PAF) of the various interaction tensors. Calculations involving the
CSA and the dipolar tensors shown in Section 3, and those involving
the diffusion tensor in Section 4 all make use of unitary
transformations.

A.4.4. Active and passive transformations
Notice that the components of jvi in Eq. (A11) transform inver-

sely to the way the basis vectors themselves transform (compare to
Eq. (A9)). This is because, under a change of basis, the vector jvi is
in fact unchanged; it is only the coordinate system that is modified.
For example, consider the case where cS produces a simple rota-
tion in real, three-dimensional space: the coordinate axes are ro-
tated by some finite angle about a given axis, and the vector
components transform in the opposite sense (by an equal and
opposite angle of rotation about the same axis), so as to maintain
the correct specification of the abstract vector. Because the vector
(i.e. the physical system) itself remains unchanged, a change-of-
basis operation is classified as a passive transformation.

It is clear from this description that a mathematically-equiva-
lent description is obtained by performing an active transformation
that leaves the coordinate frame constant (i.e. leaves the basis vec-
tors unchanged), but transforms all of the vectors in the opposite
sense to that in which the basis vectors are modified in a passive
transformation. In this case, however, the operation of an arbitrary
operator cA on the basis vectors remains unchanged (because the
basis itself is unchanged), and therefore, the matrix elements of
cA are constant under an active transformation. Notice that the
designation of active versus passive transformations is referenced
to the vectors rather than the operators. Vectors are changed in ac-
tive transformations, and left untouched in passive ones. The oper-
ators are constant in active transformations, and undergo
similarity transformation in passive ones.

A.5. Density matrix evolution in the interaction frame

We now consider the transformation of a system evolving un-
der a Hamiltonian cH ¼ cH0 þ cH1ðtÞ, where cH0 is time-indepen-
dent, with the time evolution described by Eq. (38). Using the

unitary operators bU ¼ eibH0t and bUy ¼ e&ibH0t , where cH0t is time-
independent, we have

@

@t
~̂q ¼ @

@t
bUq̂ bUy
h i

¼ @ bU
@t

q̂ bUy þ bU @q̂
@t
bUy þ bUq̂ @ bUy

@t

¼ icH0 bUq̂ bUy þ bU &i cHðtÞ; q̂
h i& '

bUy þ bUq̂ bUy &icH0

& '

¼ icH0
~̂q& i bU cHðtÞ; q̂

h i
bUy & i ~̂qcH0

¼ i cH0; ~̂q
h i

& i bU cHðtÞ; q̂
h i

bUy: ðA21Þ
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Using Eq. (A6), the last term is:

i bU cHðtÞ; q̂
h i

bUy ¼ i bUcH bUy; bUq̂ bUy
h i

¼ i bU cH0 þ cH1ðtÞ
& '

bUy; ~̂q
h i

¼ i bUcH0 bUy þ bUcH1ðtÞ bUy; ~̂q
h i

¼ i cH0 bU bUy þ fcH1ðtÞ; ~̂q
( )

¼ i cH0 þ
fcH1ðtÞ; ~̂q

( )
: ðA22Þ

Therefore, using Eq. (A7) we obtain,

@

@t
~̂q ¼ &i fcH1ðtÞ; ~̂q

( )
; ðA23Þ

where the effects of the static component cH0 have been removed.

Appendix B. Treatment of NMR interactions

B.1. Dipole–dipole interaction energy

The quantum mechanical Hamiltonian for dipolar coupling is
justified by the analogous formula for interaction energy of two
magnetic dipoles obtained through classical electromagnetic the-
ory. The relevant calculation is presented below.

B.1.1. Magnetic field due to a point dipole
Consider a magnetic dipole moment (i.e. an infinitesimal cur-

rent loop), the location of which we take to define the origin of
our coordinate system. In SI units, the magnetic vector potential
at a location described by the position vector r

*
¼ rêr due to this

magnetic dipole is given by

A
*

D ¼
l0

4p
l
*
( r

*

r3
; ðB1Þ

where ( denotes the vector cross product, l
*
¼ lêz is the magnetic

dipole moment, êz is a unit vector pointing along the z-axis
of a right-handed Cartesian coordinate system, and l0 ¼ 4p(
10&7 kg m s&2 A&2 is the permeability of free space (not to be con-
fused with the magnetic dipole moment). In spherical polar coordi-
nates ðr; h;/Þ(not to be confused with Euler angles), where h and /
are the polar and azimuthal angles, respectively (following the con-
vention most often used in physics [49]).

êz ¼ cos h êr & sin h êh ðB2Þ

and we have

l
*
( r

*
¼ l cos h êr & sin h êhð Þ ( r êr ðB3Þ

and since êr ( êr ¼ 0 and êh ( êr ¼ &ê/

l
*
( r

*
¼ lr sin h ê/: ðB4Þ

The magnetic field B
*

D produced by the magnetic dipole is given
by the curl of A

*

D:

B
*

D ¼ r
*

(A
*

D; ðB5Þ

where in spherical coordinates the curl of an arbitrary function V is
defined as:

r
*

(V
*

¼ 1
r2 sin h

êr r êh r sin h ê/
@
@r

@
@h

@
@/

Vr rVh r sin hV/

!!!!!!!

!!!!!!!
: ðB6Þ

Since A
*

D has neither êr nor êh components (ADr ¼ ADh ¼ 0), and

AD/ ¼
l0

4p
l sin h

r2
; ðB7Þ

we have

B
*

D ¼ 1
r2 sin h

êr r êh r sin h ê/
@
@r

@
@h

@
@/

0 0 r sin hAD/

!!!!!!!

!!!!!!!

¼ l0

4p
1

r2 sin h
@

@h
l sin2 h

r

 !
êr &

@

@r
l sin2 h

r

 !
r êh

" #

¼ l0

4p
2l cos h êr þ l sin h êh

r3
: ðB8Þ

Employing Eq. (B2) once more

B
*

D ¼
l0

4p
2l cos hêr þ l cos hêr & êzð Þ

r3
¼ l0

4p
3l cos hêr

r3
& l

*

r3

" #
ðB9Þ

and using the definition of the scalar dot product:

B
*

D ¼
l0

4p
3ðl

*
0 r
*
Þêr

r4
& l

*

r3

" #
: ðB10Þ

or somewhat more elegantly

B
*

D ¼
l0

4p
3ðl

*
0 r
*
Þ r
*

r5
& l

*

r3

" #
: ðB11Þ

B.1.2. Interaction energy between two point dipoles
The potential energy, E, of a magnetic dipole placed in a mag-

netic field B
*

is given by

E ¼ &l
*
0 B
*

ðB12Þ

Thus, the interaction energy, ED1D2 , between two magnetic dipoles
l
*

1 and l
*

2 is given by

ED1D2 ¼ &l
*

1 0 B
*

D2 ¼
l0

4p
l
*

1 0 l
*

2

r3
& 3ðl

*

1 0 r
*
Þðl

*

2 0 r
*
Þ

r5

" #
ðB13Þ

which is Eq. (123).

B.2. Chemical shielding

The presence of an applied magnetic field induces an electrical
current in the electron cloud surrounding a nucleus, thereby gener-
ating an additional magnetic field. As a result, the total magnetic
field at nucleus is changed. This effect can enhance (de-shielding)
or decrease (shielding) the strength of the magnetic field at the nu-
cleus and may also change the effective orientation of the magnetic
field such that the applied and the total magnetic fields at the nu-
cleusarenot colinear. Thedifference canbe inferredby theperturba-
tion of the vector potential (A

*

) by the electron cloud. It is also correct
to say that the externalmagnetic field creates amagnetic dipolemo-
ment at the nucleus, which creates a perturbed vector potential.

The shielding effect depends on the orientation of the external
field; hence it should be described by a tensor rather than a scalar
number. The orientational dependence of the chemical shielding
on the external magnetic field can be observed in solid-state
NMR [68].

For a nucleus with a magnetic moment l
*

in an external mag-
netic field B

*

, the energy change DE is given by [69]

DE ¼ &l
*
0 B
*

þl
*
0r
_

B
*

; ðB14Þ

where the first term is the direct interaction of the nucleus with the
field (the so-called Zeeman interaction) while the second term is
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the electron-coupled interaction described by the shielding tensor
r
_
.
Before starting the actual description of the perturbation effects

we should note the differences between the terms ‘‘chemical shift”
and ‘‘chemical shielding”. The chemical shielding, as described
above, is an orientation-dependent tensor quantity that describes
the change in the local magnetic field (i.e. the field sensed by the
nucleus) due to the interaction of the electron cloud with the
external field, whereas the chemical shift is the change of the res-
onance frequency of a nucleus relative to a given standard [68].

The relation between chemical shift, d
_

, and chemical shielding
tensor can be expressed as:

d
_

¼ 1
_

riso & r
_
; ðB15Þ

where 1
_

is the unit rank-2 tensor, riso is the isotropic value of the
given standard and r

_
is the chemical shielding tensor.

The chemical shielding tensor is a 3( 3 matrix with nine non-
zero components (in general). The tensor itself is asymmetric,
but the number of independent non-zero components can be re-
duced by molecular symmetry. One can define each term of the
matrix representation of r

_
as:

rik ¼
@2E

@li@Bk
; ðB16Þ

where E is the total electronic energy of the molecule, i; k ¼ x; y; z,
and Bk are the components of the external magnetic field in the
direction k.

The energy E is determined by using second-order perturbation
theory. Excellent reviews are available on the calculation of chem-
ical shift tensor elements. We refer the reader to these reviews
without reproducing the results here [70–73].

Appendix C. Correlation functions and spectral densities

C.1. The auto-correlation function

Consider any function XðtÞ that takes a random value at each
point in time, governed by the probability PðX; tÞ. That is, PðX; tÞ
gives the probability that XðtÞ will take the value X at time t. Such
a function XðtÞ can define, for example, the orientation of a body
undergoing rotational diffusion, in time.

The average value of XðtÞ, i.e. the average orientation, is given
by integrating over all possible orientations, X, at a given time:

XðtÞ ¼
Z

XðtÞP X; tð ÞdX: ðC1Þ

A function f ðtÞ ¼ f ðXðtÞÞ will likewise be random in time, with an
average value

f ðtÞ ¼
Z

f ðXÞP X; tð ÞdX: ðC2Þ

The averages in Eqs. (C1) and (C2) may be interpreted physically in
a similar way as the average in Eq. (44); that is, as ensemble aver-
ages over an ensemble of particles undergoing independent rota-
tional diffusion. In the case of relaxation, Hamiltonians for
interactions such as the dipolar coupling and chemical shift anisot-
ropy satisfy the requirements for the function f ðXðtÞÞ: spatial func-
tions that are constant in the molecular diffusion frame are
stochastic functions in the lab frame, due to the effect of rotational
diffusion that constantly reorients the molecule with respect to the
external field.

Now, we may consider that while XðtÞ is random, for short
times s the values XðtÞ and Xðt þ sÞ will not be completely inde-
pendent random variables, but will instead show a correlation.
Physically, this must be the case for rotational diffusion, since

the diffuser cannot instantaneously ‘jump’ from one orientation
to another that is significantly different. Defining t0 ¼ t þ s, we
can define the function PðX0; t0;X; tÞ as the probability that
XðtÞ ¼ X and Xðt0Þ ¼ X0. We define the conditional probability
PðX0; t0jX; tÞ as the probability that Xðt0Þ ¼ X0 given that we know
XðtÞ ¼ X at the earlier time t. We may thus interpret PðX0; t0jX; tÞ
as a probability of ‘transition’ from orientation X to X0 over the
time s ¼ t0 & t.

PðX0; t0;X; tÞ depends on the probability that the diffuser is in
state X at time t to begin with (which has a probability PðX; tÞ of
occurring), and then on the probability of the transition to state
X0 over time s (which has probability PðX0; t0jX; tÞ of occurring).
Then we may write:

PðX0; t0;X; tÞ ¼ PðX; tÞPðX0; t0jX; tÞ: ðC3Þ

The auto-correlation function Gaðt; t0Þ, of a random function faðtÞ
with itself relative to times t and t0, is defined as

Gaðt; t0Þ ¼ fa tð Þf #a t0ð Þ; ðC4Þ

where the overbar denotes an ensemble average.
In the same vein as Eq. (C2), we may rewrite the auto-correla-

tion function as

Gaðt; t0Þ ¼
Z Z

faðXÞf #a ðX
0ÞP X0; t0;X; t
$ %

dXdX0 ðC5Þ

and employing Eq. (C3),

Gaðt; t0Þ ¼
Z Z

PðX; tÞP X0; t0jX; t
$ %

faðXÞf #a ðX
0ÞdXdX0: ðC6Þ

We assume rotational diffusion to be a Markovian process,
which is to say that the future state of the system depends only
on the present state, and not upon how it arrived there (i.e. the sys-
tem has no ‘memory’). This implies that the statistical properties of
XðtÞ – that is, the functions PðX; tÞ – are in fact independent of time
(i.e. XðtÞ are stationary random functions). Furthermore, the func-
tions PðX0; t0jX; tÞ and PðX0; t0;X; tÞ do not depend specifically on
the times t and t0, but rather on their difference s. Thus, it does
not matter when we start measuring the auto-correlation function;
what matters is only the period of time over which we measured it
(i.e. how long we measure it for). Simply stated, all the probability
functions are independent of the origin of time, which implies
ergodicity. As a result, we may arbitrarily set t ¼ 0, yielding:

t0 ¼ s;
Gaðt; t0Þ ! GaðsÞ;
PðX; tÞ ! P X0ð Þ;
PðX0; t0jX; tÞ ! PðX; sjX0Þ;

ðC7Þ

where X0 denotes the value of XðtÞ at time t ¼ 0. The auto-correla-
tion function is then

GaðsÞ ¼
Z Z

fa X0ð Þf #a Xð ÞP X0ð ÞPðX; sjX0ÞdXdX0: ðC8Þ

In the case of rotational diffusion, we assume that the system is at
equilibrium at t ¼ 0, and denote the equilibrium probability distri-
bution function as PðX0Þ ¼ PeqðX0Þ. The auto-correlation function
can be written as [74]:

GaðsÞ ¼
Z Z

fa X0ð Þf #a Xð ÞPeq X0ð ÞPðX; sjX0; 0ÞdXdX0: ðC9Þ

C.2. The cross-correlation function

The cross-correlation of two random functions faðXÞ and fbðXÞ is
defined using the same reasoning as above for the auto-correlation,
yielding
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Gab sð Þ ¼ fa tð Þf #b t0ð Þ ðC10Þ

and

Gabðt; t0Þ ¼
Z Z

faðXÞf #b ðX
0ÞP X0; t0;X; t
$ %

dXdX0: ðC11Þ

Taking t ¼ 0 and assuming the system to be at equilibrium initially,

GabðsÞ ¼
Z Z

fa X0ð Þf #b Xð ÞPeq X0ð ÞPðX; sjX0ÞdXdX0: ðC12Þ

It may of course be considered that the auto-correlation function is
simply a special case of the cross-correlation function for which
b ¼ a.

C.3. Properties of correlation functions

As discussed above, for ergodic processes faðtÞ, we may arbi-
trarily move the origin of time without affecting the value of the
correlation function. We may therefore write

Gab sð Þ ¼ fa 0ð Þf #b sð Þ ¼ fa &sð Þf #b 0ð Þ; ðC13Þ

which is to say

Gab sð Þ ¼ G#ba &sð Þ: ðC14Þ

Consider the auto-correlation function GaðsÞ. If faðsÞ is a real func-
tion, then G#aðsÞ ¼ GaðsÞ and GaðsÞ is thus both real and even:

Ga sð Þ ¼ Ga &sð Þ: ðC15Þ

For real functions faðtÞ and fbðtÞ, the correlation function is a
maximum at the origin (this is plain to see for auto-correlation:
at s ¼ 0 a function is perfectly correlated with itself):

jGabðsÞj 6 Gabð0Þ: ðC16Þ

C.4. Operator correlation functions

The concept of correlation is not restricted to scalar functions.
We may just as easily define correlation between stochastic oper-
ators cAaðtÞ and cAbðtÞ, simply replacing complex conjugate opera-
tions with the adjoint, and considering an operator and its
Hermitian conjugate in place of real and complex scalar functions:

GðabÞiji0 j0 ¼ ih jAaðtÞ jj i j0
4 !!Ay

b t þ sð Þ i0
!! 5; ðC17Þ

where the various kets are basis kets. Since Hamiltonians are Her-
mitian, cHa ¼ cHy

a, their correlation is given simply by

GðabÞiji0 j0 ¼ ih jHaðtÞ jj i j0
4 !!Hb t þ sð Þ i0

!! 5: ðC18Þ

C.5. The spectral density functions

The spectral density function JabðxÞ (often referred to as the
power spectrum) is defined simply as the Fourier transform of the
correlation function:

JabðxÞ ¼
Z 1

&1
Gab sð Þe&ixsds ¼ J#baðxÞ ðC19Þ

Thus, the auto-correlated spectral density function JaðxÞ is real.
Employing the Euler identity eih ¼ cos hþ i sin h, we may write,

Jab xð Þ ¼
Z 1

&1
Gab sð Þ cos &xsð Þ þ i sin &xsð Þ½ +ds

¼
Z 1

&1
Gab sð Þ cos xsð Þ & i sin xsð Þ½ +ds: ðC20Þ

Since for a real, ergodic function faðtÞ, the auto-correlation GaðsÞ is
an even function, it follows that:

Ja xð Þ ¼ 2
Z 1

0
Ga sð Þ cos xsð Þds ðC21Þ

and in this case JaðxÞ is also a real and even function:
JaðxÞ ¼ Jað&xÞ. In addition, we note without proof that the auto-
correlated spectral density function of an ergodic process is non-
negative for all x.

Eq. (C21) facilitates the definition of two other auto-correlated
spectral density functions of ergodic processes which appear often
in the main text, jaðxÞ and KaðxÞ. Rewriting Eq. (C21) and employ-
ing the Euler identity in the opposite sense as in Eq. (C20), we have

1
2
Ja xð Þ ¼

Z 1

0
Ga sð Þ cos xsð Þ & i sin xsð Þ þ i sin xsð Þ½ +ds

¼
Z 1

0
Ga sð Þe&ixsdsþ i

Z 1

0
Ga sð Þ sin xsð Þds ðC22Þ

and defining

ja xð Þ ¼
Z 1

0
Ga sð Þe&ixsds;

Ka xð Þ ¼
Z 1

0
Ga sð Þ sin xsð Þds;

ðC23Þ

we have

ja xð Þ ¼ 1
2
Ja xð Þ & iKa xð Þ: ðC24Þ

Thus the real and imaginary parts of jaðxÞ, respectively, are given by

Re ja xð Þf g ¼ 1
2
Ja xð Þ;

Im ja xð Þf g ¼ &Ka xð Þ:
ðC25Þ

The correlation function is written in terms of the spectral density
JabðxÞ as

Gab sð Þ ¼
1
2p

Z 1

&1
Jab xð Þeixsdx: ðC26Þ

For s ¼ 0, Eq. (C26) becomes

Gab 0ð Þ ¼ 1
2p

Z 1

&1
Jab xð Þdx: ðC27Þ

Likewise,

Ga 0ð Þ ¼ fa tð Þ2 ¼ 1
2p

Z 1

&1
Jab xð Þdx: ðC28Þ

In the event that faðtÞ represents a component of a fluctuating mag-
netic field (e.g. one of the various mechanisms leading to relaxa-
tion), the quantity in Eq. (C28) represents an expansion in the
frequency spectrum of the power dissipated by the process.

C.6. Correlation times

A correlation time is defined somewhat loosely as a time interval
sc such that GðscÞ is large. Correlation does not exist for signifi-
cantly longer intervals: jsj - sc , and GðsÞ decays rapidly for times
longer than sc. Various definitions for sc are appropriate depending
on the interaction in question. For example, one option is to use the
total area under the GðsÞ curve as a metric of the length of the
effective correlation time:

sc ¼
Z 1

0
G sð Þj jds: ðC29Þ

Alternatively, one might choose a differential definition of the effec-
tive sc that measures the ‘decay’ slope of GðsÞ:

sc ¼
d
dsG sð Þ

!!!!
s¼0

!!!!

!!!!
&1

: ðC30Þ
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Several factors affect the correlation time of the rotation of a gi-
ven rigid molecule, including molecular size, molecular shape, sol-
vent viscosity, and temperature. In water, sc is typically on the
order of hundreds of picoseconds for small molecules, and on the
order of nanoseconds for macromolecules [2].

Appendix D. Fundamental theory of angular momentum and
rotations

In this appendix, we present the fundamental results of angular
momentum theory. Much of this material is covered in standard
quantum mechanics texts [19,50,51], and Brink and Satchler [75],
Zare [76], and Rose [77] have written excellent books devoted to
the topic of angular momentum and rotations (we follow argu-
ments from both of these latter two books below). In addition,
Silver [78] provides a thorough yet accessible treatment of irreduc-
ible tensor methods.

The physical and mathematical tools developed in this appen-
dix are central to this article, and must be fully understood in order
to appreciate the details of both relaxation theory and rotational
diffusion theory.

D.1. Orbital angular momentum operators

D.1.1. Operator definitions
Classically, a particle of mass m travelling with velocity v

*
at po-

sition r
*
has linear momentum p

*
¼ mv

*
and angular momentum

L
*

¼ r
*
( p

*
; ðD1Þ

where ( denotes the vector cross product. cL
*

, the quantum
mechanical counterpart of L

*

in Eq. (D1), is obtained by replacing
p
*
with the operator p̂ ¼ !h

i r
*

where r
*

is the gradient ‘del’ operator
r
*

¼ @
@x êx þ

@
@y êy þ

@
@z êz (and êx; êy, and êz are unit vectors in a right-

handed Cartesian coordinate system). The form of p̂may be justified
according to its role as the generator of infinitesimal translation
(see Appendix D.3.1). The p̂ operator is clearly Hermitian. For nota-
tional convenience, we shall proceed using so-called Planck’s units
in which !h ¼ 1, as in the main text. The operator components of the
quantum mechanical angular momentum vector operator cL are
then

cLj ¼ &i k
@

@l
& l

@

@k

" #
; ðD2Þ

where fj; k; lg ¼f x; y; zg and cyclic permutations; that is,
fj; k; lg ¼ ffx; y; zg; fy; z; xg; fz; x; ygg. In spherical polar coordinates
ðr; h;/Þ, where h and / are the polar and azimuthal angles,
respectively,

cLx ¼ i sin/
@

@h
þ cot h cos/

@

@/

" #
;

cLy ¼ i & cos/
@

@h
þ cot h sin/

@

@/

" #
;

cLz ¼ &i
@

@/
:

ðD3Þ

By writing their matrix representations in a suitable basis of
eigenfunctions (see below), it can be verified that these operators
are Hermitian (they thus have strictly real eigenvalues correspond-
ing to quantum mechanical observables, namely, the projection of
total angular momentum onto each axis). These operators corre-
spond to the orbital angular momentum of a particle, due to the
motion of its center of mass about an external point.

The angular momentum operators obey commutation relations
of the form

cLj;cLk

h i
¼ icL l; ðD4Þ

where, again, fj; k; lg ¼f x; y; zg and cyclic permutations.
These relationships may be easily verified through the applica-

tion of the various operators to test functions (i.e. confirming that
½cLj;cLk+f ¼ cLjcLkf &cLkcLjf ¼ cLlf for any function f). The com-
mutation relation (D4) is also frequently expressed in the literature
using the equivalent equation, ½cLj;cLk+ ¼ i!jklcLl, where !jkl is
known as the Levi-Civita symbol or asymmetric unit (pseudo)ten-
sor, and is defined by !xyz ¼ !yzx ¼ !zxy ¼ 1, !xzy ¼ !yxz ¼ !zyx ¼ &1,
and all other !jkl ¼ 0. The commutation relation is also occasionally

given as cL
*

(cL
*

¼ i cL
*

, which is indeed quite elegant, if less imme-
diately informative than the other expressions.

The total angular momentum squared operatorcL2 is defined as

cL2 ¼ cL
*

0cL
*

¼ cL2
x þcL

2
y þcL

2
z ; ðD5Þ

which can be expressed in spherical polar coordinates as

cL2 ¼ & 1
sin2 h

@2

@/2 þ
1

sin h
@

@h
sin h

@

@h

" #" #

: ðD6Þ

The operator obeys the commutation relations

cL2;cLx

h i
¼ cL2;cLy

h i
¼ cL2;cLz

h i
¼ 0; ðD7Þ

which, like Eq. (D4), may be verified through application of the
operators to arbitrary test functions. Since the orientation of the
coordinate system may be chosen arbitrarily, Eq. (D7) shows that
cL2 commutes with the projection of the orbital angular momen-
tum on any Cartesian axis.

D.1.2. Eigenfunctions and eigenvalues
Two quantum mechanical variables are ‘compatible’ – that is,

they may be measured/observed simultaneously and without
uncertainty – if states exist that have well-defined eigenvalues
for the operators corresponding to both variables. That is, two vari-
ables are simultaneously observable if there is a complete, simulta-
neous set of eigenfunctions of both corresponding operators (any
arbitrary state vector may be expanded in such a basis). The exis-
tence of such eigenfunctions implies that the operators corre-
sponding to such variables commute. This is readily seen by
considering two operators cA and bB with simultaneous eigenfunc-
tions ja; bi. For all eigenfunctions ja; bi:

cA a; bj i ¼ a a; bj i;
bB a; bj i ¼ b a; bj i;
cA bB a; bj i ¼ bcA a; bj i ¼ ba a; bj i;
bBcA a; bj i ¼ a bB a; bj i ¼ ba a; bj i;

) cA bB & bBcA ¼ ½cA; bB+ ¼ 0:

ðD8Þ

Because the various cLj do not commute with each other, while
each commutes with cL2, we may know only the total angular
momentum (squared) and one of the components with simulta-
neous certainty. In otherwords, the eigenfunctions ofcL2 are simul-
taneous eigenfunctions of one of the cLj, the identity of which
depends on how we choose our coordinate system. By convention,
we take this to becLz, thoughwe couldhave chosen another axis just
as easily. Thus we may choose normalized states jkl;mi such that

cL2 kl;mj i ¼ kl kl;mj i;
cLz kl;mj i ¼ m kl;mj i;

ðD9Þ
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so that kl is proportional to the square of the total angular momen-
tum, and m is proportional to the projection of the total angular
momentum onto the laboratory z-axis.

Consider the operator cL2
x þcL2

y ¼ cL2 &cL2
z , which is diagonal

in the fjkl;mig basis since all jkl;mi are eigenfunction of both cL2

and cLz

cL2 &cL2
z

& '
kl;mj i ¼ kl &m2$ %

kl;mj i: ðD10Þ

The quantity kl &m2 is clearly greater than or equal to zero since
each term is the square of a real scalar, and the total angular
momentum is larger in magnitude than its projection onto the z-
axis. We then have kl P m2, implying that the values of m for a gi-
ven kl are bounded between some m ¼ mmax and m ¼ mmin. Let us
denote these extreme values of m more succinctly, as l and l0:

l 3 mmax 6 m 6 mmin 3 l0: ðD11Þ

In the following sections, we will define the nature of these
eigenfunctions and eigenvalues more precisely.

D.1.3. Definition of ladder operators
We define two operators cLþ and cL&

cL$ 3 cLx $ icLy ðD12Þ

or in spherical polar coordinates,

cL$ ¼ e$i/ $ @

@h
þ i cot h

@

@/

" #
; ðD13Þ

which are non-Hermitian (in fact, cLy
$ ¼ cL2), and therefore do not

have real eigenvalues that correspond to observables. That is to say,
there is no simple correspondence between these operators and any
physical quantity or measurement. They are nevertheless quite use-
ful in examining the nature of wave functions.

It is readily obtained from Eqs. (D4) and (D7) that

cL2;cL$

h i
¼ 0 cLz;cL$

h i
¼ $cL$;

cLþ;cL&

h i
¼ 2cLz:

ðD14Þ

Let us examine the second of the commutation relations (D14)
by application to an eigenfunction jkl;mi:

cLz;cL$

h i
kl;mj i ¼ $cL$ kl;mj i

¼ cLzcL$ kl;mj i &cL$cLz kl;mj i

¼ cLzcL$ kl;mj i &mcL$ kl;mj i;
cLzcL$ kl;mj i ¼ mcL$ $cL$

& '
kl;mj i;

cLz cL$ kl;mj i
& '

¼ m$ 1ð Þ cL$ kl;mj i
& '

:

ðD15Þ

According to Eq. (D9), this implies that

cL$ kl;mj i ¼ k$ kl;m$ 1j i; ðD16Þ

where the constants kþ and k& have yet to be determined. Thus,cLþ

and cL&, aptly referred to as the raising and lowering operators,
respectively (or ladder operators as a pair), operate on the eigen-
states jkl;mi so as to alter m by $1 while preserving the value of
kl, producing ‘new’ states that are also eigenstates of cL2 and cLz.
Because the value of m is strictly bounded between l and l0 (see
Eq. (D11)), cLþ and cL& act at the top and bottom of the state ‘lad-
der’, respectively, to annihilate the state rather than transform it
(they are therefore also called creation and annihilation operators).
That is:

cLþ kl; lj i ¼ cL& kl; l
0!! 5
¼ 0: ðD17Þ

Notice that beginning with any single eigenstate for a given value of
kl, one could use the ladder operators to determine every other pos-
sible state of equivalent kl-value.

D.1.4. Determination of eigenvalues using ladder operators
With an understanding of the ladder operators, consider the

operator cL&cLþ, which we now use to determine the form of the
eigenvalues kl and m. Using Eq. (D12), we have

cL&cLþ ¼ ðcLx & icLyÞðcLx þ icLyÞ

¼ cL2
x þ icLxcLy & icLycLx þcL2

y

¼ cL2
x þcL

2
y þ iðcLxcLy &cLycLxÞ

¼ cL2
x þcL

2
y þ i cLx;cLy

h i
¼ cL2

x þcL
2
y þ i2cLz

¼ cL2
x þcL

2
y &cLz ¼ cL2

x þcL
2
y þ ðcL

2
z &cL

2
z Þ &cLz

¼ cL2 &cL2
z &cLz: ðD18Þ

Applying this operator to an eigenfunction with maximal m ¼ l,

cL&cLþ kl; lj i ¼ cL&ð0Þ ¼ 0;

cL2 &cL2
z &cLz

& '
kl; lj i ¼ ðkl & l2 & lÞ kl; lj i ¼ 0;

ðD19Þ

which implies

kl ¼ lðlþ 1Þ: ðD20Þ

Using identical reasoning for the operator cLþcL& ¼ cL2 &L2
z þLz

and applying it to an eigenfunction jkl; l
0i with minimal m ¼ l0, one

obtains

kl ¼ l0ðl0 & 1Þ; ðD21Þ

which in consideration of Eq. (D20) indicates

lðlþ 1Þ ¼ l0ðl0 & 1Þ
ðlþ l0Þððlþ 1Þ & l0Þ ¼ 0

) l0 ¼ &l; lþ 1:

ðD22Þ

The solution l0 ¼ lþ 1 is inadmissible, since it violates our defini-
tion of l ¼ mmax and implies l0 > l. Thus we conclude that l0 ¼ &l,
and m may thus take any of the 2lþ 1 values from l to &l, in
integer steps:

m ¼ l; l& 1; . . .& lþ 1;&l: ðD23Þ

One may see this easily by starting at the top ðm ¼ lÞ of the of the
eigenstate ‘ladder’ and working down to the bottom ðm ¼ &lÞ by re-
peated application of cL&.

As for l, consider that, starting on either end of the eigenstate
ladder, one can reach the other end in n steps, where n is some
integer; but we know that the number of necessary steps is just
2l (i.e. 2l is an integer)

2l ¼ n ) l ¼ n=2: ðD24Þ

Since n is an integer, this implies that lmay take on integral (even n)
or half-integral (odd n) values. As it happens, only integral values of
l are permissible for orbital angular momentum. There are many
justifications of this constraint; the simplest is to consider some-
what more concretely the action of cLz on an eigenfunction ex-
pressed in spherical coordinates. Using the last line in Eq. (D3),
we have:

cLz kl;mj i ¼ m kl;mj i ¼ &i @

@/
kl;mj i; ðD25Þ

from which we infer that jkl;mi behaves like eim/,
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&i @

@/
eim/
, -

¼ &iðimÞeim/ ¼ m eim/: ðD26Þ

However, if half-integer l – and therefore half-integer m – were al-
lowed, the wave function would not be single-valued under a 2p
rotation (which should leave the system invariant):

eimð2pÞ ¼
þ1; m ¼ integer;
&1; m ¼ half integer;

2
ðD27Þ

This confirms that l and consequently m take only integer values.

D.1.5. Determination of k$
In the preceding treatment, it was unnecessary to determine the

actual values of the constants kþ and k& appearing in Eq. (D16).
However, because the ladder operators appear throughout the
main text and in many practical applications, it is worth determin-
ing the values k$, as we shall do presently. As noted earlier, we
have cLy

$ ¼ cL2. Therefore, we may take the adjoint of Eq. (D16)
as follows:

ðcL$ kl;mj iÞy ¼ ðk$ kl;m$ 1j iÞy;

kl;mh jcL2 ¼ kl;m$ 1h jk#$:
ðD28Þ

Using this result, we may calculate the expectation value
hkl;mjcL2cL$jkl;mi as follows:

kl;mh jcL2cL$ kl;mj i ¼ kl;m$ 1h jk#$k$ kl;m$ 1j i

¼ k#$k$ kl;m$ 1jkl;m$ 1h i ¼ k$j j2: ðD29Þ

However, we can calculate the same entity using Eq. (D18):

kl;mh jcL2cL$ kl;mj i ¼ kl;mh jðcL2 &cL2
z $cLzÞ kl;mj i

¼ kl;mh jðkl &m2 $mÞ kl;mj i

¼ ðkl &m2 $mÞ kl;mjkl;mh i

¼ kl &m2 $m ¼ lðlþ 1Þ &mðm$ 1Þ: ðD30Þ

Using the previous two equations, we may then write,

k$j j2 ¼ lðlþ 1Þ &mðm$ 1Þ; ðD31Þ

which is to say,

k$ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ &mðm$ 1Þ

q
ðD32Þ

or alternatively,

k$ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2mÞðl$mþ 1Þ

q
: ðD33Þ

Both expressions appear often in the literature, and are equivalent.

D.1.6. Summary
Given the extensive use of angular momentum operators in Sec-

tion 4, it is worth summarizing the results obtained in this section.
We have defined the orbital angular momentum, the related oper-
ators, and the eigenfunctions and calculated the corresponding
eigenvalues. Here we review the key results.

The quantum mechanical vector operator cL
*

has components
(which are themselves operators)

cLj ¼ &i k
@

@l
& l

@

@k

" #
; ðD34Þ

where fj; k; lg ¼f x; y; zg and cyclic permutations. These operators
obey commutation relations of the form

cLj;cLk

h i
¼ icLl; ðD35Þ

where again fj; k; lg ¼f x; y; zg and cyclic permutations.

The total angular momentum squared operatorcL2 is defined as

cL2 ¼ cL
*

0cL
*

¼ cL2
x þcL

2
y þcL

2
z ðD36Þ

and commutes with each of the components of cL
*

. We may choose
functions that are simultaneously eigenfunctions of cL2 and only
one of the components of cL

*

, which we choose by convention to
be cLz. We label each of these eigenfunctions jkl;mi according to
the eigenvalues kl and m, of cL2 and cLz, respectively. In fact, it is
more practical to label the eigenfunctions as jl;mi, where l is related
to kl according to kl ¼ lðlþ 1Þ. Thus

cL2 l;mj i ¼ lðlþ 1Þ l;mj i;
cLz l;mj i ¼ m l;mj i:

ðD37Þ

The label l is related to the system’s total angular momentum
(squared), and is called the orbital angular momentum quantum
number or azimuthal quantum number, while m (which is related
to the component of the angular momentum in the z direction) is
known as the magnetic quantum number. l may take only positive
integer values (i.e. l ¼ 0;1;2;3;4 . . .). Given a particular value of
l;m may take any of the values between l and &l, in integer steps:
m ¼ l; l& 1; . . . ;0; . . .& lþ 1;&l: ðD38Þ
Finally, we note the so-called ladder operators,
cL$ 3 cLx $ icLy: ðD39Þ
which are non-Hermitian, cLy

$ ¼ cL2, and obey the relations

cL2;cL$

h i
¼ 0 cLz;cL$

h i
¼ $cL$;

cLþ;cL&

h i
¼ 2cLz:

ðD40Þ

The ladder operators act on the simultaneous eigenfunctions of cL2

and cLz according to

cL$ l;mj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ &mðm$ 1Þ

q
l;m$ 1j i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2mÞðl$mþ 1Þ

q
l;m$ 1j i: ðD41Þ

For eigenfunctions labeled by maximal or minimal values of m
(m ¼ þl and m ¼ &l, respectively), the ladder operators act to anni-
hilate the state

cLþ l; lj i ¼ cL& l;&lj i ¼ 0: ðD42Þ

Note that all the results derived in this section are equally appli-

cable to the spin angular momentum operator bI
*

. In this case,
however, l and consequently m can take half-integer values. For
example, for a spin-1/2 system l ¼ 1

2 and m ¼ $ 1
2.

D.2. Spherical harmonics

D.2.1. Definition
When considering orbital angular momentum, spherical polar

coordinates provide a logical and natural representation in which
to perform explicit calculations. In this coordinate system, the
eigenfunctions jl;mi of cL2 and cLz are given by the well-known
spherical harmonic functions:

l;mj i ! Ym
l h;/ð Þ: ðD43Þ

The Ym
l ðh;/Þ for m P 0 are given by

Ym
l h;/ð Þ ¼ &1ð Þl 2lþ 1ð Þ!

4p

( )1=2

( 1
21l!

lþmð Þ!
2lð Þ! l&mð Þ!

( )1=2
eim/ sin hð Þ&m dl&m

d cos hð Þl&m
sin hð Þ2l:

ðD44Þ
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Forms for m < 0 may be obtained by successive application of
the lowering operator cL& to Y0

l ðh;/Þ, or more simply through
the relation

Y&ml h;/ð Þ ¼ &1ð ÞmYm#
l h;/ð Þ: ðD45Þ

Note that form ¼ 0, the spherical harmonics have no /-dependence
whatsoever.

The spherical harmonics may also be expressed in terms of the
so-called associated Legendre polynomials Pm

l ðcos hÞ (again with
0 6 m 6 l):

Ym
l h;/ð Þ ¼ &1ð Þm 2lþ 1ð Þ l&mð Þ!

4p lþmð Þ!

( )1=2
eim/Pm

l cos hð Þ; ðD46Þ

where

Pm
l cos hð Þ ¼ sinm h

dm

d cos hð Þm
Pl cos hð Þ ðD47Þ

and the ordinary Legendre polynomials Plðcos hÞ are given by

Pl cos hð Þ ¼ 1
2ll!

dl

d cos hð Þl
cos2 h& 1
$ %l

: ðD48Þ

The spherical harmonics may naturally be thought of in terms
of ð2lþ 1Þ-member groups sharing the same value of l. Functions
Ym

l ðh;/Þ of the same l-value are said to be of the same rank.

D.2.2. Orthonormalization
The Ym

l ðh;/Þ are orthogonal and normalized in the sense that
Z 2p

0

Z p

0
Ym#

l h;/ð ÞYm0

l0 h;/ð Þ sin hdhd/ ¼ dll0dmm0 ; ðD49Þ

where dnn0 is the Kronecker delta.

D.2.3. Addition theorem
The Ym

l ðh;/Þ obey the so-called addition theorem:

2lþ 1
4p

" #1=2

Y0
l h; 0ð Þ ¼ Pl cos hð Þ

¼
Xl

m¼&l

Ym#
l h1;/1ð ÞYm

l h2;/2ð Þ: ðD50Þ

D.2.4. Explicit expressions for l 6 2
For reference, we list the first several spherical harmonics:

Y0
0 ¼ 4pð Þ&1=2

Y$11 ¼ 2 3=8pð Þ1=2 sin he$i/

Y0
1 ¼ 3=4pð Þ1=2 cos h

Y$22 ¼ 15=32pð Þ1=2 sin2 he$2i/

Y$12 ¼ 2 15=8pð Þ1=2 sin h cos he$i/

Y0
2 ¼ 5=16pð Þ1=2 3 cos2 h& 1

$ %
:

ðD51Þ

D.3. Orbital angular momentum operators as generators of
infinitesimal rotations

D.3.1. Unitary transformations and generators of infinitesimal
transformations

Suppose bUðdHÞ is a unitary operator defined as

bUðdHÞ ¼ 1̂þ idHcT; ðD52Þ

where dH is an infinitesimal, real quantity, and the operator cT is
Hermitian, cTy ¼ cT (cT must be Hermitian for bU to be unitary).
Thus, bU is very nearly equal to the identity operator, but creates

an infinitesimal transformation due to cT, which is therefore called
the generator of infinitesimal transformation.

Repeated unitary transformations constitute a single ‘net’ uni-
tary transformation; a repeated change of basis is equivalent to a
single change of basis from the original to the final representation
(see Appendix A.4.1). We may then regard a finite unitary transfor-
mation as the sum of infinitesimal ones, dividing the finite ‘step
size’ H into n smaller steps of size H=n and considering the limit
as n ! 1. We write:

bUðHÞ ¼ lim
n!1

1̂þ i
H
n
cT

" #n

¼ exp iHcT
& '

; ðD53Þ

and we may alternatively interpret the operator exponential on the
right-hand side of Eq. (D53) as the power series expansion.

D.3.2. Rotations
As discussed in Appendix A.4.3, rotations are unitary transfor-

mations, and we therefore expect to write a rotation operator in
the form of Eq. (D53). We define a positive angle of rotation as
one for which turning a right-handed screw about its axis through
the specified angle would advance the screw forward along the
axis, away from the origin. We specify a given rotation bDnðHÞ using
a unit vector ên lying along the axis of rotation, and a (positive or
negative) angle of rotation H. That is, bDnðHÞ rotates a state vector
jU0i around ên through an angle H, transforming it into
jUi 3j U0 þHi

bDn Hð Þ U0j i ¼ Uj i: ðD54Þ

Note that this is an active transformation, operating on the physical
system. An equivalent passive transformation would rotate the
coordinate system in the opposite sense, that is, through an angle
&H (see Appendix A.4.4).

For convenience, consider a rotation around the z-axis (that is
ên ¼ êz) by an angle /. As / ! 0, bDnð/Þ ! 1̂, and therefore
jUi ! jU0i. Then for very small /, we may replace jUi with it a
Maclaurin series expansion of jU0i

Uj i¼
X1

n¼0

&/ð Þn

n!
@n

@/n U0j i¼exp &/
@

@/

" #
U0j i) bDz /ð Þ¼exp &/

@

@/

" #

ðD55Þ

or making use of Eq. (D3)

bDz /ð Þ ¼ exp &i/cLz

& '
: ðD56Þ

Thus, comparing Eqs. (D56) and (D53), we see that the angular
momentum operator cLz is the generator of infinitesimal rotation
about the z-axis (alternatively, some authors use Eq. (D56) to define
cLz). Generalizing this illustrative result to an arbitrary axis of rota-
tion is straightforward, and yields

bDn Hð Þ ¼ exp &iHcL
*

0ên
" #

; ðD57Þ

where 0 denotes the dot product, and cL
*

is the angular momentum
vector operator with components cLx;cLy, and cLz.

D.4. Euler rotations

D.4.1. Definitions
As mentioned in Appendix D.3.1, successive unitary transforma-

tions constitute a single ‘net’ unitary transformation. Thus, one
may specify the total reorientation achieved by repeated rotations
as a single rotation through a proper angle H, about an appropriate
axis defined by the vector ên. Therefore, any reorientation in three-
dimensional space may be specified by just three parameters: two
to define the orientation of ên, and one to indicate H. Euler first
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proved this property of rotations, and the so-called Euler angles
X ¼ ð/; h; cÞ (we also use h and / for spherical polar coordinates;
see Appendix D.4.3 for a discussion on conventions) and associated
rotations that bear his name comprise a convenient means for
specifying reorientations.

Euler angles are used to describe the transformation whereby
a set of axes F ¼ ðx; y; zÞ initially coinciding with F1 ¼ ðx1; y1; z1Þ
is made to coincide with another set F2 ¼ ðx2; y2; z2Þ sharing a
common origin. For example, consider the passive transforma-
tion (see Appendix A.4.4) from the ‘space-fixed’ coordinates of
the laboratory (LAB) to the ‘body-fixed’ coordinates of a diffusion
tensor or interaction tensor principal axis frame (PAF). Similarly,
Euler angles may be used to specify the active rotation of func-
tions, tensors, or rigid bodies within a fixed coordinate system.
The prescription [50,76–79] for Euler rotations is as follows
(Fig. 1).

Step 1. Assume two stationary axis systems F1 and F2, and one
axis system F which rotates. Initially, F and F1 coincide. Rotate
the axis system F counterclockwise about the positive z1-axis
by an angle /. This carries the y-axis into the so-called line of
nodes N along the intersection between the x1y1- and x2y2-
planes.
Step 2. Looking along the line of nodes N towards the rotated
positive y-axis, rotate the F axis system counterclockwise about
N by an angle h. The z- and z2-axes now coincide, and the x-axis
now lies in the x2y2-plane.
Step 3. Finally, rotate the F axis system counterclockwise about
the z2-axis by an angle c. The F axis system now coincides with
F2.

Note that the angles / and h are equivalent to the identically-
named spherical polar coordinates; the former fix the axis of the
final Euler rotation just as the azimuthal and polar coordinates
fix êr . Thus, / and h fix ên, while c ¼ H.

To avoid redundancy, the Euler angles, like the spherical polar
coordinates, are confined to the particular ranges:

0 6 / 6 2p 0 6 h 6 p 0 6 c 6 2p: ðD58Þ

D.4.2. Rotation operators parameterized by Euler angles
D.4.2.1. Active rotations. Making repeated use of Eq. (D57), we may
write the active rotation of a state vector jU0i to jUi as specified by
Euler angles

bDðXÞ U0j i ¼ bDð/; h; cÞ U0j i ¼ Uj i; ðD59Þ

where

bDðXÞ ¼ bDð/; h; cÞ ¼ bDz2 ðcÞ bDNðhÞ bDz1 ð/Þ

¼ expð&iccLz2 Þ expð&ihcLNÞ expð&i/cLz1 Þ: ðD60Þ

Eq. (D60) is somewhat cumbersome because it contains angular
momentum operators referenced to both the F1 and F2 coordinate
systems. In fact, we may write the rotation operator referenced en-
tirely to the F1 coordinates, by proceeding as follows.

bDNðhÞmay be regarded as a rotation about the y1 axis under the
transformation bDz1 ð/Þ; that is, as a rotation about the y-axis of a
coordinate system rotated relative to F1 by / about the z1-axis.
According to Eq. (A16), we may write this transformation in the
original F1 frame as

bDNðhÞ ¼ bDz1 ð/Þ bDy1 ðhÞ bDz1 ð&/Þ: ðD61Þ

In similar fashion, bDz2 ðcÞ is equivalent the rotation bDz1 ðcÞ under the
transformation bDNðhÞ

bDz2 ðcÞ ¼ bDNðhÞ bDz1 ðcÞ bDNð&hÞ ðD62Þ

or employing Eq. (D61),

bDz2 ðcÞ ¼ bDz1 ð/Þ bDy1 ðhÞ bDz1 ð&/Þ bDz1 ðcÞ bDz1 ð/Þ bDy1 ð&hÞ bDz1 ð&/Þ:
ðD63Þ

Since rotations about the same axis obviously commute, we
may write

bDz2 ðcÞ ¼ bDz1 ð/Þ bDy1 ðhÞ bDz1 ðcÞ bDy1 ð&hÞ bDz1 ð&/Þ ðD64Þ

Inserting Eqs. (D61) and (D64) into Eq. (D60), we have

bDð/; h; cÞ ¼ bDz1 ð/Þ bDy1 ðhÞ bDz1 ðcÞ bDy1 ð&hÞ
bDz1 ð&/Þ bDz1 ð/Þ bDy1 ðhÞ ðD65Þ
bDz1 ð&/Þ bDz1 ð/Þ

bDð/; h; cÞ ¼ bDz1 ð/Þ bDy1 ðhÞ bDz1 ðcÞ

¼ expð&i/cLz1 Þ expð&ihcLy1 Þ expð&iccLz1 Þ: ðD66Þ

Eq. (D66) expresses the rather unexpected, yet highly useful result
that the Euler rotations may all be carried out in the same frame F1,
with the order of the rotations reversed.

D.4.2.2. Passive rotations. A passive rotation affecting the coordi-
nate system rather than the state vectors is equivalent to an active
rotation of the state vectors in the opposite direction with the
coordinates fixed, as described in Appendix A.4.4. Thus, if we desire
a passive transformation between bases, we subject each basis vec-
tor to a transformation of the form of Eq. (D66), and the coordi-
nates of the state vectors transform as if the vectors had
undergone the inverse rotation.

It is clear from geometrical arguments that the inverse rotation
is achieved by reversing the order of the Euler rotations, and rotat-
ing through negative angles:

bD&1ð/; h; cÞ ¼ bDð&c;&h;&/Þ

¼ expðiccLz1 Þ expðihcLy1 Þ expði/cLz1 Þ:
ðD67Þ

Thus, in performing a change of frame from F1 to F2 (see Appendix
A.4.1), state vector components transform according to

Fig. 1. The Euler angles /; h, and c describing transformation from the initial
F1 ¼ ðx1; y1; z1Þ frame to the final F2 ¼ ðx2; y2; z2Þ frame. The three Euler rotations
are made in order about specific axes as denoted in the figure. The line of nodes N
marks the intersection between the x1y1- and x2y2-planes (shown as white and gray
discs, respectively), which are tilted relative to one another by an angle h.
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Uj i F2ð Þ ¼ expðiccLz1 Þ expðihcLy1 Þ

expði/cLz1 Þ Uj i F1ð Þ:
ðD68Þ

D.4.3. Conventions and notation
The prescription given above for Euler rotations is the one most

commonly adopted throughout physics and NMR literature. How-
ever, as with spherical coordinates, multiple conventions exist, and
one must pay careful attention to conventions when consulting
any reference. See p. 108 of Ref. [79] for a helpful survey of
conventions.

The Euler angles frequently appear in the literature as a, b, and
c. We prefer to use the symbols / and h for the first two angles be-
cause of their equivalence to the spherical polar coordinates, as
mentioned above. Note, however, the reversal of the order of
appearance of / and h in spherical polar coordinates vs. Euler angle
specifications.

Euler angles are sets of angles, but not vectors, and therefore no
simple rules of addition, subtraction, or commutation apply (this is
a result of the non-commutivity of rotations about different axes).
For example, since Euler rotations involve multiple rotations in
prescribed order, reorientations specified by the angles X are in
general not undone by rotations through the angles
&X ¼ ð&/;&h;&cÞ; that is to say, &X does not specify the inverse
of the transformation specified by X, and vice versa. In fact, as
noted earlier, the inverse of the transformation specified by X is
accomplished by rotating through the negative angles &X, but per-
forming the rotations in the opposite order, i.e. X&1 ¼ ð&c;&h;&/Þ.
Some authors do use &X to specify the inverse of the transforma-
tion specified by X, which is indeed tempting, for it appeals to the
intuitive notion that rotation through a negative angle should gen-
erate an apposite configuration compared to a rotation through a
positive angle. However, such notation obscures the fact that X
represents a set of angles and that these Euler angles are not in fact
a symmetric set of parameters. We avoid potential confusion by
using the notation X&1 instead.

bD&1ðXÞ ¼ bDðX&1Þ– bDð&XÞ ðD69Þ

Likewise, performing the rotation specified by X12 (e.g. from
frame F1 to F2) followed by the rotation specified by X23 is not
equivalent to the rotation specified by X12 þX23 ¼ ð/12 þ /23;
h12 þ h23; c12 þ c23Þ. We prefer instead the notation X13 ¼ X12!23

to specify the total resulting transformation.

bDðX13Þ ¼ bDðX23Þ bDðX12Þ ¼ bDðX12!23Þ– bDðX12 þX23Þ ðD70Þ

Different authors adopt different points of view regarding how
the rotation operator is to be applied, i.e. whether it is an active
transformation on the state vectors (the physical system), or a pas-
sive transformation that rotates the coordinate axes. Section 1.15
of Ref. [78] provides a helpful account of the conventions adopted
by various authors of standard texts, as well as making note of
some inconsistencies. Wolf [80] offers a particularly enlightening
and detailed discussion of these matters.

D.5. Wigner rotation matrices

D.5.1. Definition
Matrix representations of rotation operators in the basis of cL2

andcLz eigenfunctions Ym
l ðh;/Þ ¼ jl;mi are known asWigner matri-

ces [81], which we introduce now.
The arbitrary rotation operator bDnðHÞ ¼ expð&iHcL

*

0ênÞ com-
mutes with cL2,

exp &iHcL
*

0ên
" #

;cL2
( )

¼
X

m

1
m! &iHð Þm cL

*

0ên
" #m

;cL2

" #
¼ 0:

ðD71Þ
cL2 commutes with the angular momentum operator cL

*

0ên refer-
enced to any axis n (see Eq. (D7)). Thus, the rotated eigenfunction
bDnðHÞjl;mi is still an eigenfunction of cL2, and its eigenvalue is
unchanged:

cL2 bDn Hð Þ l;mj i
& '

¼ bDn Hð Þ cL2 l;mj i
& '

¼ lðlþ 1Þ bDn Hð Þ l;mj i
& '

:

ðD72Þ

This is fairly intuitive: the total angular momentum (squared) does
not depend on a particular orientation or choice of coordinates. The
projection of the total angular momentum onto a the z-axis, how-
ever, does depend on orientation and choice of coordinates, and
the eigenvalue m of cLz is therefore not preserved under rotation.
Rather, the rotated function bDnðHÞjl;mi is a superposition of eigen-
functions jl; ki with different eigenvalues k but the same l. We may
write this rotated eigenfunction, then, as a linear combination of the
complete set of 2lþ 1 eigenfunctions jl; ki, each weighted by
hl; kj bDnðHÞjl;mi, its projection onto the rotated state vector

bDn Hð Þ l;mj i ¼
Xl

k¼&l

l; kh j bDn Hð Þ l;mj i l; kj i

¼
Xl

k¼&l

l; kh j bDð/; h; cÞ l;mj i l; kj i

¼
Xl

k¼&l

Dl
kmð/; h; cÞ l; kj i ðD73Þ

D.5.2. Evaluation of matrix elements
The coefficients Dl

kmð/; h; cÞ ¼ Dl
kmðXÞ of the expansion in Eq.

(D73) are simply the matrix elements of the rotation operator ex-
panded in the basis of eigenfunctions jl;mi, that is, elements of the
Wigner rotation matrices. Like the spherical harmonics, theWigner
elements (also commonly referred to as Wigner functions), are nat-
urally grouped by l-value, and functions with equivalent values of l
are said to be of the same rank. By convention, the matrices are ar-
ranged with k decreasing from top to bottom and m decreasing
from left to right. For example, for l = 1 (i.e. rank 1) Wigner func-
tions, we have

D1ðXÞ ¼
D1

11ðXÞ D1
10ðXÞ D1

1&1ðXÞ
D1

01ðXÞ D1
00ðXÞ D1

0&1ðXÞ
D1
&11ðXÞ D1

&10ðXÞ D1
&1&1ðXÞ

0

B@

1

CA ðD74Þ

Computation of the matrix elements is relatively straightfor-
ward. First, we note (by analogy to Eq. (67)) that

expð&iHcLzÞ l;mj i ¼ expð&imHÞ l;mj i: ðD75Þ

Then we may write the matrix elements as

Dl
kmð/; h; cÞ ¼ l; kh j bDð/; h; cÞ l;mj i

¼ l; kh j expð&i/cLzÞ expð&ihcLyÞ expð&iccLzÞ l;mj i

¼ expð&ik/Þ expð&imcÞ l; kh j expð&ihcLyÞ l;mj i
ðD76Þ

and therefore

Dl
kmð/; h; cÞ ¼ expð&ik/Þ expð&imcÞdl

kmðhÞ ðD77Þ

where

dl
kmðhÞ 3 l; kh j expð&ihcLyÞ l;mj i ðD78Þ
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is referred to as the reduced Wigner rotation function/matrix ele-
ment. The derivation of closed expressions for dl

kmðhÞ (of which sev-
eral are available, the first given by Wigner [81]) is somewhat
laborious, and we therefore make note only of the result:

dl
kmð/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ kÞ!ðl& kÞ!ðlþmÞ!ðl&mÞ!

q X
s

(
ð&1Þk&mþs cos h

2

$ %2lþm&k&2s sin h
2

$ %k&mþ2s

lþm& sð Þ! k&mþ sð Þ! l& k& sð Þ!s!
: ðD79Þ

The summation in Eq. (D79) extends over all positive values of s
for which none of the arguments of the factorial terms in the
denominator is negative. Clearly, d0

00ðhÞ ¼ 1. Tables 3 and 4 provide
complete expressions for the first- and second-rank reduced Wig-
ner functions.

D.5.3. Properties
Wigner functions of rank l may be used to rotate spherical har-

monics of the same rank. More generally, any irreducible spherical
tensor Tl of rank lwith components Tk

l may be rotated according to
Eq. (D73),

Tm
l ¼

Xl

k¼&l

Dl
kmðXABÞTk

l ðD80Þ

That is, in general, when rotating a tensor from an ‘orientation A’
where it has components Tk

l to another ‘orientation B’ in which
the components are Tm

l (connected by the Euler angles XAB), each
component Tm

l of the rotated tensor may be calculated using Eq.
(D80).

Note that Eqs. (D77) and (D79) define the Wigner functions for
active rotations, which we have chosen because we find the pre-
ceding explanations somewhat more intuitive from this point of
view. Expressions for passive rotations (i.e. coordinate transforma-
tions) may be easily obtained by making use of Eq. (D67) (that is,
by changing the sign of all Euler angles, and interchanging / and
c) or more simply, by noting that Wigner matrices are unitary

Dl&1
km Xð Þ ¼ Dl

km &c;&h;&/ð Þ ¼ Dl#
mkðXÞ: ðD81Þ

Then toperformacoordinate transformation fromthe F1 initial frame
(typicallyan interaction frame) to the F2 final frame (typically the lab-
oratory frame)on the tensorTl, one simply subjects its components to
the inverse of the transformation in Eq. (D80). Then

Tm
l ðF2Þ ¼

Xl

k¼&l

Dl#
mkðX12ÞTk

l ðF1Þ; ðD82Þ

where X12 is the set of Euler angles describing the rotation of the F1

coordinate frame into the F2 coordinate frame. Note that some ref-
erences define the Wigner functions to produce passive rotations, in
which case the usage of Eqs. (D80) and (D82) would be reversed.

The reduced Winger functions obey the relationships,

dl
nk hð Þ ¼ dl

kn &hð Þ ¼ dl
&k;&n hð Þ ¼ &1ð Þn&kdl

kn hð Þ ¼ &1ð Þn&kdl
&n;&k hð Þ

ðD83Þ

from which it is straightforward to see from the definition in Eq.
(D77):

Dl
kmðXÞ ¼ ð&1Þ

k&mDl#
&k&mðXÞ: ðD84Þ

A well-known property of unitary matrices is that their col-
umns, when treated as vectors, are orthonormal to one another,
with an identical relationship holding for the rows. Since the Wig-
ner matrices are unitary, we may therefore write the orthogonality
relationship

Xl

k¼&l

Dl#
km Xð ÞDl

kn Xð Þ ¼ dmn; ðD85Þ

for the columns and

Xl

k¼&l

Dl#
mk Xð ÞDl

nk Xð Þ ¼ dmn; ðD86Þ

for the rows.
It is easily shown [76] that Wigner functions are also orthogonal

in the sense that
Z

Dl0#
k0m0 ðXÞDl

kmðXÞdX ¼
8p2

2lþ 1
dl0 ldk0kdm0m; ðD87Þ

where
Z

dX ¼
Z 2p

0
d/
Z p

0
dh sin h

Z 2p

0
dc: ðD88Þ

This orthogonality makes the normalized Wigner functions

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1
8p2

r
Dl

km Xð Þ

( )

; ðD89Þ

an ideal basis set in which to expand other scalar functions.
For the rotation specified by X13 ¼ X12!23, the following ‘addi-

tion theorem’ applies:

Dl
km X13ð Þ ¼

Xl

n¼&l

Dl
kn X12ð ÞDl

nm X23ð Þ: ðD90Þ

Finally, we note that the normalized spherical harmonics may
be easily expressed in terms of Wigner functions,

Table 3
Rank-1 reduced Wigner functions, d1

kmðhÞ.

k m

1 0 &1

1 cos2 h
2

$ % &1ffiffi
2

p sin h sin2 h
2

$ %

0 1ffiffi
2

p sin h cos h &1ffiffi
2

p sin h

&1 sin2 h
2

$ % 1ffiffi
2

p sin h cos2 h
2

$ %

Table 4
Rank-2 reduced Wigner functions, d2

kmðhÞ.

k m

2 1 0 &1 &2

2 cos4ðh2Þ & 1þcos h
2 sin h

ffiffi
3
8

q
sin2 h & 1&cos h

2 sin h sin4 h
2

$ %

1 1þcos h
2 sin h cos2 h& 1&cos h

2 &
ffiffi
3
8

q
sinð2hÞ

1þcos h
2 & cos2 h & 1&cos h

2 sin h

0
ffiffi
3
8

q
sin2 h

ffiffi
3
8

q
sinð2hÞ

1þ3 cosð2hÞ
4 &

ffiffi
3
8

q
sinð2hÞ

ffiffi
3
8

q
sin2 h

&1 1-cosh
2 sin h 1þcos h

2 & cos2 h
ffiffi
3
8

q
sinð2hÞ cos2 h& 1&cos h

2 & 1þcos h
2 sin h

&2 sin4ðh2Þ
1&cos h

2 sin h
ffiffi
3
8

q
sin2 h

1þcos h
2 sin h cos4 h

2

$ %

M.P. Nicholas et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 57 (2010) 111–158 147



Ym
l h;/ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1
4p

r
Dl#

m0 /; h; cð Þ; ðD91Þ

Y&ml ðh; cÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1
4p

r
Dl

0mð/; h; cÞ; ðD92Þ

and likewise the associated Legendre polynomials are given by

Dl
00ð/; h; cÞ ¼ Plðcos hÞ: ðD93Þ

Appendix E. Diffusion equations and operators

E.1. The diffusion equation

E.1.1. Derivation
In this section we derive the rotational diffusion equation [82–

85] from first principles, employing arguments from Newtonian
and statistical mechanics [86].

@P X; tjX0ð Þ
@t

¼ &cL 0 D
_

0cL UðXÞ
kBT

" #
P X; tjX0ð Þ

( )

&cL 0 D
_

0cLP X; tjX0ð Þ: ðE1Þ

Bulk materials such as liquids, membranes or proteins are
many-body systems (i.e. systems of N interacting particles), and
the motional processes in these systems can be defined by New-
ton’s equation:

mi
@2

@t2
r
*

i ¼ &
@

@ ri
*Uðr

*

1; r
*

2; . . . ; r
*

NÞ; ðE2Þ

where the position of ith particle is described by r
*

i. This equation
becomes unwieldy to solve exactly when the system is large, i.e.
the number of particles, N, is large. However, some processes can
be described with only a few degrees of freedom: instead of using
the positions of all particles, the position of the center of mass is
sufficient to describe motional properties (e.g. translational or rota-
tional diffusion).

For a set of N particles of mass m let us consider a small subset
of three degrees of freedom, with generalized coordinates
q1; q2; q3. The evolution of these coordinates can be described
by a Langevin equation [87]:

m
d2

dt2
qj ¼ &

@

@qj
Uðq1; q2; q3Þ & c @

@t
qj þ r!jðtÞ; ðE3Þ

with j ¼ 1;2;3.
The first derivative on the right-hand side is the force derived

from the effective potential Uðq1; q2; q3Þ. The second term is a
friction force exerted by surrounding molecules (i.e. elements
outside the subspace spanned by the three degrees of freedom
under consideration). Note that, in this case, the projection of
the friction force along one dimension does not depend on the
coordinates in other dimensions. The friction coefficient c is in
general a tensor quantity. We treat it as a scalar in the present
discussion for simplicity. The last term in the above equation is a
stochastic force due to the collisions with surrounding mole-
cules. The sum of the last two terms is the so-called Langevin
force [88], where r represents the amplitude of the stochastic
force.

Let us consider Eq. (E3) along one of the three dimensions.

We define a ‘vector’ r
*
¼ r1

r2

( )
with r1 ¼ m

dqj

dt
and r2 ¼ mqj.

The process of interest here is stochastic and can be described
with a stochastic differential equation (SDE):

@ r
*
ðtÞ

@t
¼ A

*

½r
*
ðtÞ; t+ þ bB½r

*
ðtÞ; t+ 0 h

*

ðtÞ; ðE4Þ

A
*

½r
*
ðtÞ; t+ is the drift term and bB½r

*
ðtÞ; t+ is the noise term. When the

fluctuation term h
*

ðtÞ is set to zero, Eq. (E4) describes the determin-

istic drift of particles due to the force A
*

½r
*
ðtÞ; t+ [83].

We have:

A
*

½r
*
ðtÞ; t+ ¼

Fðr2=mÞ & cr1=m
r1

( )

bB½r
*
ðtÞ; t+ ¼

r 0
0 0

( )

h
*

ðtÞ ¼
!jðtÞ
0

( )
ðE5Þ

with FðqjÞ ¼ &
@

@qj
Uðq1; q2; q3Þ.

The stochastic term !jðtÞ averages to zero:

!jðtÞ ¼ 0: ðE6Þ

It corresponds to events (collisions) that can be considered instan-
taneous and uncorrelated, so that

!iðt1Þ!jðt0Þ ¼ dijdðt1 & t0Þ: ðE7Þ

At this point we make use of Itō’s formula to write the SDE for a
distribution function f ½r

*
ðtÞ+. The derivation of Itō’s formula is be-

yond the scope of this review, and a detailed discussion can be
found elsewhere [89].

df ½r
*
ðtÞ+ ¼

X

i

Aið@ if ½r
*
ðtÞ+Þdt þ

X

ij

Bijð@if ½r
*
ðtÞ+ÞdwjðtÞ

þ 1
2

X

ijk

BikBjkð@i@jf ½r
*
ðtÞ+Þdt; ðE8Þ

where

@i ¼
@

@qi
; i; j; k ¼ 1;2;3: ðE9Þ

Taking the average, df ½r
*
ðtÞ+, of df ½r

*
ðtÞ+, the second sum vanishes

because Bij and @if ½r
*
ðtÞ+ are statistically independent of dwjðtÞ, and

dwjðtÞ ¼ hðtÞdt.
Finally we can write the average of the time derivative of the

distribution function as:

d
dt

f ½r
*
ðtÞ+ ¼

X

i

Aið@if ½r
*
ðtÞ+Þ þ 1

2

X

ij

½B̂ 0 B̂T+ijð@i@jf ½r
*
ðtÞ+Þ; ðE10Þ

where bBT is the transpose of bB. The term d
dt f ½r

*
ðtÞ+ can be written in

terms of the sum of all possible jumps with probabilities
Pðr

*
; tjr

*

0; t0Þ:

d
dt

f ½r
*
ðtÞ+ ¼

Z
f ½r

*
ðtÞ+Pðr

*
; tjr

*

0; t0Þd r
*
: ðE11Þ

Eqs. (E10) and (E11) yield

Z
f ½rðtÞ+Pðr

*
; tjr

*

0; t0Þd r
*

¼
Z

dr

P
i
Aið@if ½r

*
ðtÞ+Þ

þ 1
2

P
ij
½bB 0 bBT+ijð@i@jf ½r

*
ðtÞ+Þ

0

BB@

1

CCAPðr
*
; tjr

*

0; t0Þ: ðE12Þ

Eq. (E12) can be simplified by changing the order of the partial
differential operators. For further simplification we can assume
that there is a subspace, S, with a surface @s on which the result
of integration is a good approximation. Then the first sum in Eq.
(E12) becomes:
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Z

S
d r

*X
i
A
*

ið@if ½r
*
ðtÞ+ÞPðr

*
; tjr

*

0; t0Þ

¼ &
Z

S
d r

*
f ½r

*
+
X

i

@ iA
*

iPðr
*
; tjr

*

0; t0Þ ðE13Þ

þ
Z

S
d r

* X

i

@iA
*

if ½r
*
+Pðr

*
; tjr

*

0; t0Þ
 !

;

Z

S
d r

* X

i

A
*

ið@if ½r
*
ðtÞ+ÞPðr

*
; tjr

*

0; t0Þ

¼ &
Z

S
d r

*
f ½r

*
+
X

i

@ iA
*

iPðr
*
; tjr

*

0; t0Þ ðE14Þ

þ
Z

@S
d a

*
0 A
*

f ½r
*
+Pðr

*
; tjr

*

0; t0Þ:

The second integral on the right-hand side is the surface term.
Assuming that Pðr

*
; tjr

*

0; t0Þ is of finite spatial extent in a way that
it vanishes on the boundary, @s, the surface term can be neglected.

The same calculation can be applied to the second sum of Eq.
(E12) which then leads to
Z

f ½r
*
+Pðr

*
; tjr

*

0; t0Þd r
*

¼ &
Z

S
d r

*
f ½r

*
+

P
i
@iAiPðr

*
; tjr

*

0; t0Þ

þ 1
2

P
ij
@i@j½bB 0 bBT+ijPðr

*
; tjr

*

0; t0Þ

0

BB@

1

CCA: ðE15Þ

Since f ½r
*
+ is an arbitrary function we can rewrite Eq. (E15) as

@

@t
Pðr

*
; tjr

*

0; t0Þ

¼ &
X

i

@iAiPðr
*
; tjr

*

0; t0Þ þ
1
2

X

ij

@ i@j½bB 0 bBT +ijPðr
*
; tjr

*

0; t0Þ: ðE16Þ

Eq. (E16) is the Fokker–Planck (FP) Equation. It holds for the SDE
Eq. (E4) in the Itō framework. Thus, a Langevin process, i.e. Eq. (E3),
can be described by the Fokker–Planck equation, the explicit form
of which can be written as:

@

@t
Pðr;

*
tjr

*

0; t0Þ ¼ &r
*

0 F
*

ðrÞ
c þr2 r2

2c2

0

@

1

APðr
*
; tjr

*

0; t0Þ ðE17Þ

with r ¼ qj.
In the case of a scalar potential Uðr

*
Þ such that F

*

ðr
*
Þ ¼ &r

*

Uðr
*
Þ

one expects the Boltzmann distribution to be a stationary solution.
The Boltzmann distribution is:

PBðr
*
jr
*

0Þ ¼
1
Z
exp

&Uðr
*
Þ

kBT

 !
; ðE18Þ

with

@

@t
PBðr

*
jr
*

0Þ ¼ 0: ðE19Þ

and

Z ¼
Z

exp
&Uðr

*
Þ

kBT

 !
d r

*
; ðE20Þ

where Z is the partition function that ensures PBðr
*
jr
*

0Þ is normal-
ized. An alternate form for Z has been defined following Eq. (E63).

Defining a diffusion term D ¼ r2=2c2 (note that diffusion along
q1; q2 and q3 directions are assumed to be same, due to the friction
coefficient c being a scalar; D is in reality a rank-2 tensor, D

_

, as de-
scribed below), writing b ¼ 1=kBT and using Eqs. (E18) and (E19) as
the stationary solution to the FP equation we obtain

r
*

0r
*

D&r
*

0 F
*

ðr
*
Þ

c

0

@

1

Ae&bUð r
*
Þ ¼ 0; ðE21Þ

and Eq. (E17) becomes

@

@t
Pðr

*
; tjr

*

0; t0Þ ¼ r
*

0 r
*

D& F
*

ðr
*
Þ

c

0

@

1

APðr
*
; tjr

*

0; t0Þ: ðE22Þ

We integrate Eq. (E22) over the subspace S with a number of parti-
cles NS to give

NSðtjr
*

0; t0Þ ¼
Z

S
d r

*
Pðr

*
; tjr

*

0; t0Þ: ðE23Þ

We now take the partial differential with respect to time t and use
Eq. (E22) to obtain:

@

@t
NSðtjr

*

0; t0Þ ¼
Z

S
d r

*
r
*

0 r
*

D& F
*

ðr
*
Þ

c

0

@

1

APðr
*
; tjr

*

0; t0Þ: ðE24Þ

We can apply Gauss’ Theorem to give:

@

@t
NSðtjr

*

0; t0Þ ¼
Z

@S
d a

*
0 r

*

D& F
*

ðr
*
Þ

c

0

@

1

APðr
*
; tjr

*

0; t0Þ: ðE25Þ

The left side of the equation defines the rate of change of the
number of particles, NS. The right side contains a surface integral
summing the scalar products between the surface element d a

*
of

@S and jðr
*
; tjr

*

0; t0Þ, the particle flux at the boundary @S. Essentially
Eq. (E25) is the continuity equation where:

jðr
*
; tjr

*

0; t0Þ ¼ r
*

D& F
*

ðr
*
Þ

c

0

@

1

APðr
*
; tjr

*

0; t0Þ: ðE26Þ

Using the stationary solution of the FP equation (the Boltzmann
distribution) with boundary conditions such that at equilibrium
the flux vanishes:

j0ðr
*
Þ ¼ r

*

D& F
*

ðr
*
Þ

c

0

@

1

ANe&bUð r
*
Þ ¼ 0: ðE27Þ

Noting that

r
*

De&bUð r
*
Þ ¼ e&bUð r

*
Þ r

*

Dþ bD F
*

ðr
*
Þ

" #
; ðE28Þ

one can rewrite Eq. (E27) as:

ebUð r
*
Þ Db F

*

ðr
*
Þ þ rD& F

*

ðr
*
Þ

c

0

@

1

A ¼ 0 ðE29Þ

from which one obtains

r
*

D ¼ F
*

ðr
*
Þ c&1 & Db
$ %

: ðE30Þ

Eq. (E30) is known as the fluctuation dissipation theorem (FD).
The FD theorem is better known for the case of a uniform diffusion
constant D, when

Dbc ¼ 1 () r2 ¼ 2kBTc: ðE31Þ

The friction coefficient c depends on the physical properties of
the particle and the environment as c ¼ 6pga, where a is the radius
of the particle (the particle is assumed to be spherical) and g is the
viscosity. Then

D ¼ 1
bc ¼

kBT
6pga : ðE32Þ

Eq. (E32) is the Stokes–Einstein relation for the diffusion constant.
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Eq. (E31) is important since it implies a relationship between the
amplitude of the fluctuating forces r and the amplitude of the dissi-
pative forces c. The FD theorem states that for a system to attain
thermodynamic equilibrium, the amplitudes of fluctuating and dis-
sipative forces have to obey a temperature dependent relationship.

We now use Eq. (E30) in the following identity, which holds for
any function f ðrÞ:

r
*

0r
*

Df ðrÞ ¼ r
*

0Dr
*

f ðrÞ þ r
*

0f ðrÞr
*

D; ðE33Þ

r
*

0r
*

Df ðrÞ ¼ r
*

0Dr
*

f ðrÞ þ r
*

0 F
* 1

c & Db
" #

; ðE34Þ

and using Eq. (E34) for the first term on the right-hand side of Eq.
(E22) one obtains the Smoluchowski equation. The Smoluchowski
equation is also called the Diffusion Equation, and is

@Pðr
*
; tjr

*

0; t0Þ
@t

¼ &r
*

0 Dr
*

þbDr
*

Uðr
*
Þ

( )
Pðr

*
; tjr

*

0; t0Þ: ðE35Þ

Eq. (E35) was constructed assuming a scalar c and therefore a
scalar D, but it can be generalized by replacing the scalar D by
the corresponding rank-2 tensor D

_

with principal values
ðD1;D2;D3Þ and by substituting r0 by fq0

1; q
0
2; q

0
3g where q0

j is the va-
lue of qj at time t0. In the PAF of the diffusion tensor:

D
_

¼
D1 0 0
0 D2 0
0 0 D3

2

64

3

75: ðE36Þ

We obtain:

@Pðq1; q2; q3; tjq0
1; q

0
2; q

0
3; t0Þ

@t

¼ &r
*

0 D
_

r
*

þbD
_

r
*

Uðq1; q2; q3Þ
( )

Pðq1; q2; q3; tjq0
1; q

0
2; q

0
3; t0Þ:

ðE37Þ

When ðq1; q2; q3Þ ¼ ðx; y; zÞ, Eq. (E37) describes translational dif-
fusion in a three-dimensional space. Rotational and translational
diffusion come from the same molecular processes. They often
have to be considered as coupled. However this coupling does
not affect relaxation in solution, except perhaps when intermolec-
ular effects become important, e.g. in solutions with paramagnetic
ions [1,90,91]. From this fundamental similarity, we derive the
equation of rotational diffusion from that of translational diffusion.
This can be achieved by forcing translational diffusion to take place
on a sphere of radius r0 and using spherical polar coordinates
X ¼ ðr; h;/).

We now consider the simple case of isotropic diffusion with a
scalar diffusion constant D. We have for any function f:

r
*

0Dr
*

f ¼ D
1
r20

@2f
@h2

þ 1
tan h

@f
@h
þ 1
sin2 h

@2f
@h2

" #
: ðE38Þ

Defining D0 ¼ D=r20 and introducing the angular momentum
operator cL

*

, we also have:

cL
*

0D0cL
*

f ¼ D0cL2f ¼ &D0 @2f
@h2

þ 1
tan h

@f
@h
þ 1
sin2 h

@2f
@h2

" #
: ðE39Þ

The expressions of Eqs. (E38) and (E39) are equal. This property
can be used twice in Eq. (E37) to give:

@PðX; tjX0Þ
@t

¼ &cL
*

0DcL
*

PðX; tjX0Þ

&cL
*

0 DcL
*

bUðXÞ
( )

PðX; tjX0; t0Þ; ðE40Þ

where X describes the orientation of the diffusing particle.

A similar development can be used when the diffusion is aniso-
tropic, with a diffusion tensor D

_

, leading to:

@PðX; tjX0Þ
@t

¼ &cL
*

0D
_
cL
*

PðX; tjX0; t0Þ

&cL
*

0 D
_
cL
* UðXÞ

kBT

( )
PðX; tjX0; t0Þ: ðE41Þ

where we have written b explicitly as 1=kBT. In general, we will use
the Euler angles (see Appendix D.4) to specify the orientation X.

E.1.2. Explicit notation
It is convenient to rewrite the diffusion equation, Eq. (E41), by

explicitly evaluating the terms element-by-element. Making the
substitutions

U ¼ UðXÞ
kBT

;

P ¼ P X; tjX0ð Þ;
ðE42Þ

we can write:

@P X; tjX0ð Þ
@t

¼&cL
*

0 D
_

0cL
* UðXÞ

kBT

" #
P X; tjX0ð Þ

( )
&cL

*

0D
_

0cL
*

P X; tjX0ð Þ

¼ &cL
*

0 D
_

0cL
*

U

" #
P

( )
&cL

*

0D
_

0cL
*

P

¼&cL
*

0D
_

0 cL
*

Pþ cL
*

U

" #
P

( )

¼&cL
*

0
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

0

B@

1

CA

cLxP

cLyP

cLyP

0

BB@

1

CCAþ

cLxU

cLyU

cLyU

0

BB@

1

CCAP

2

664

3

775

¼&cL
*

0
DxxcLxPþDxycLyPþDxzcLzP

DyxcLxPþDyycLyPþDyzcLzP

DzxcLxPþDzycLyPþDzzcLzP

0

BB@

1

CCA

2

664

þ

Dxx cLxU
& '

PþDxy cLyU
& '

PþDxz cLzU
& '

P

Dyx cLxU
& '

PþDyy cLyU
& '

PþDyz cLzU
& '

P

Dzx cLxU
& '

PþDzy cLyU
& '

PþDzz cLzU
& '

P

0

BBBBB@

1

CCCCCA

3

777775
:

ðE43Þ

Expanding the dot product, we have:

@P X;tjX0ð Þ
@t

¼&cLx

DxxcLxPþDxycLyPþDxzcLzP
& '

þ Dxx cLxU
& '

PþDxy cLyU
& '

PþDxz cLzU
& '

P
& '

2

64

3

75

&cLy

DyxcLxPþDyycLyPþDyzcLzP
& '

þ Dyx cLxU
& '

PþDyy cLyU
& '

PþDyz cLzU
& '

P
& '

2

64

3

75

&cLz

DzxcLxPþDzycLyPþDzzcLzP
& '

þ Dzx cLxU
& '

PþDzy cLyU
& '

PþDzz cLzU
& '

P
& '

2

64

3

75:

ðE44Þ

Which can be written more succinctly with the use of index
notation:

@P X; tjX0ð Þ
@t

¼ &
X

i

cLi

X

j

DijcLjPþ Dij cLjU
& '

P

" #

¼ &
X

i;j

cLi DijcLjPþ Dij cLjU
& '

P
h i

: ðE45Þ
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Since the terms Dij are scalar constants and the angular momen-
tum operators are purely differentiation operators, we can factor
the Dij terms out of the expression in Eq. (E45), yielding a useful
expression for the diffusion equation in index notation:

@P

@t
¼ &

X

i;j

DijcLi cLjPþ cLjU
& '

P
h i

: ðE46Þ

The diffusion equation simplifies considerably if we work in the
principal axis frame (PAF) of the rotational diffusion tensor, for this
frame is fixed to the rotation of the molecule, and the elements of
the diffusion tensor are therefore constant. Further, in this frame,
the rotational diffusion tensor is by definition diagonal. Thus, all
terms for which j – i vanish:

@P

@t
¼ &

X

i

DiicLi cLiPþ cLiU
& '

P
h i

¼ &
X

i

Dii cL2
i PþcLi cLiU

& '
P

h i
: ðE47Þ

Many authors write Eq. (E46) with the P terms factored-out on the
right side. Indeed, this is convenient, since it facilitates the defini-
tion of a diffusion operator bR, i.e.

@P

@t
¼ & bRP; ðE48Þ

with:

bR ¼
X

i

Dii cL2
i þcLi cLiU

& 'h i
: ðE49Þ

However, it is worth noting that Eq. (E48) is at least somewhat
misleading if one evaluates the operator expression rigorously.
This is because the term cLiðcLiUÞ would appear to operate on P

as a scalar, i.e. as ðcL2
i UÞP rather than cLiððcLiUÞPÞ. To avoid con-

fusion, we therefore prefer to write the diffusion operator as

bR ¼ &
X

i

Dii cL2
i þcLi cLiU

& '

op

( )
; ðE50Þ

where the ð. . . Þop notation is taken to mean that the terms ‘. . .’ in-
side parentheses are evaluated and then treated as a single
operator.

E.2. Solution to the diffusion equation

To solve the diffusion equation for P ¼ PðX; tjX0Þ, let us use the
separation of variables approach, and assume a solution in which
PðX; tjX0Þ is the product of two functions, fmðtÞ, which is a function
of time only, and WmðXÞ, which is a function of orientation only:

PðX; tjX0Þ ¼ fmðtÞWmðXÞ: ðE51Þ

Further, let us assume that WmðXÞ is the mth eigenfunction of the
operator bR, with corresponding eigenvalue bm

bRWmðXÞ ¼ bmWmðXÞ ðE52Þ

and that WmðXÞ is normalized, in the sense that
Z

W#
m Xð ÞWm Xð ÞdX ¼ 1: ðE53Þ

Inserting Eq. (E51) into Eq. (E48), we have

@

@t
fmWmð Þ ¼ & bRfmWm ¼ &bmfmWm;

Wm
@fm
@t
¼ &bmfmWm

ðE54Þ

since bR acts only on the spatial function Wm, and @Wm
@t ¼ 0. We tem-

porarily omit the argument of each function for the sake of tidiness,
but the temporal dependence of fmðtÞ and the spatial dependence of

WmðXÞ are understood and utilized in the work below. We proceed
by multiplying both sides of Eq. (E54) by the complex conjugate
W#

m, and integrating over all X-space, making use of the normaliza-
tion of Wm (Eq. (E53)) in the second line below:
Z

W#
mWm

@fm
@t

dX ¼ &
Z

W#
mbmfmWmdX;

@fm
@t

Z
W#

mWmdX ¼ &bmfm
Z

W#
mWmdX;

@fm
@t
¼ &bmfm:

ðE55Þ

Eq. (E55) is an ordinary differential equation that is quite easy
to solve by grouping like terms and integrating:

@fm
fm
¼ &bm@t ) fm ¼ e&bmteC0 ; ðE56Þ

where C0 is simply an arbitrary constant of integration. It is plain to
see that eC0 ¼ fmð0Þ, and thus

fmðtÞ ¼ fmð0Þe&bmt : ðE57Þ

The next step in solving the diffusion equation is to find fmð0Þ.
We do this by multiplying both sides of Eq. (E51) by W#

mðXÞ and
integrating over all orientations:
Z

W#
mðXÞPðX; tjX0ÞdX ¼

Z
W#

mðXÞfmðtÞWmðXÞdX

¼ fmðtÞ
Z

W#
mðXÞWmðXÞdX;

Z
W#

mðXÞPðX; tjX0ÞdX ¼ fmðtÞ;

fmð0Þ ¼
Z

W#
mðXÞPðX;0jX0ÞdX:

ðE58Þ

Now, by definition of probability,
R
PðX;0jX0ÞdX ¼ 1, and the

conditional probability PðX;0jX0Þ must be zero for X– X0 (the
molecule can only have one orientation at t ¼ 0, and we have al-
ready defined this to be X0). The function PðX;0jX0Þ thus qualifies
as a Dirac delta function dðX&X0Þ. Thus, we can solve explicitly for
fmð0Þ:

fmð0Þ ¼
Z

W#
mðXÞdðX&X0ÞdX ¼ W#

m X0ð Þ: ðE59Þ

This ‘completes’ our solution to the diffusion equation, giving

PðX; tjX0Þ ¼ W#
m X0ð ÞWm Xð Þe&bmt : ðE60Þ

Up to this point, our arguments have been completely general:
our choice of the eigenfunctions of bR;WmðXÞ, was completely arbi-
trary. That is, Eq. (E60) is valid for any eigenfunction/eigenvalue
pair WmðXÞ=bm. By the principle of superposition, a linear combina-
tion of the independent solutions must also itself be a solution to
the diffusion equation. Thus, a more general solution to the diffu-
sion equation than the one in Eq. (E60) is given by

PðX; tjX0;0Þ ¼
X

m
W#

m X0ð ÞWm Xð Þe&bmt : ðE61Þ

E.3. Equilibrium probability distribution

The thermal equilibrium probability distribution function
PeqðXÞ satisfies the condition

dPeq Xð Þ
dt

¼ 0 ¼ & bRPeq Xð Þ; ðE62Þ

and is related to the ordering potential UðXÞ as the Boltzmann
distribution:
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Peq Xð Þ ¼ exp &U Xð Þ=kBT½ +R
exp &U Xð Þ=kBT½ +dX

¼ exp &U Xð Þ=kBT½ +
Z

; ðE63Þ

where T is the temperature, kB is the Boltzmann constant, and
Z ¼

R
exp½&UðXÞ=kBT+dX is the partition function.

Alternatively, one may consider that the equilibrium probability
distribution PeqðXÞ is equivalent to the long time behavior of the
conditional probability PðX; tjX0Þ:

lim
t!1

P X; tjX0ð Þ ¼ Peq Xð Þ: ðE64Þ

E.4. The diffusion operator

In the principal axis frame of the rotational diffusion tensor, the
rotational diffusion operator is given by Eq. (E50). Note that in the
absence of any ordering potential (i.e. U ¼ 0), Eq. (E50) reduces to
the rotational diffusion operator encountered in the discussion of
rigid molecules tumbling in isotropic solvents (Section 4).

E.4.1. Change of variables
When explicitly writing every term of the rotational diffusion

operator, it is helpful to rewrite the diffusion tensor in its principal
axis frame as

D
_

ðPAFÞ ¼
Dxx 0 0
0 Dyy 0
0 0 Dzz

0

B@

1

CA ¼ q
1þ e 0 0
0 1& e 0
0 0 g

0

B@

1

CA;

. ¼ Dxx þ Dyy

2
; e ¼ Dxx & Dyy

Dxx þ Dyy
;

g ¼ 2Dzz

Dxx þ Dyy
:

ðE65Þ

This is simply a change of variables employed for mathematical
convenience, and has no physical significance. Nevertheless, it
may be useful to interpret e as an asymmetry parameter of the dif-
fusion tensor. g is the ratio of the diffusion constant around the
molecular z-axis (‘spinning’, which is measured by .) relative to
the diffusion constant of the molecular z-axis itself (‘tumbling’,
which is measured by Dzz). In other words, g characterizes the
anisotropy of the diffusion tensor. These interpretations will be-
come especially clear at the end of the following section; see Eqs.
(E94)–(E96).

It is convenient to define a ‘new’ diffusion operator as

bC 3 1
.
bR: ðE66Þ

We can now write the diffusion equation as

1
.
@P

@t
¼ &bCP: ðE67Þ

E.4.2. Symmetrization

E.4.2.1. The symmetrizing transformation. The diffusion operator bC
is not self-adjoint; that is, its matrix representation in a basis of
Wigner functions is not Hermitian. For computational convenience
(i.e. because fewer calculations are necessary to solve for the eigen-
values and eigenvectors of a symmetrical matrix), it is convenient
to apply a ‘symmetrizing’ similarity transformation (see Appendix
A.4.2) to Ĉ. The transformation is of the form
ebC ¼ bP&1=2eq

bC bP1=2
eq ; ðE68Þ

where bP$1=2eq ¼ P$1=2eq ðXÞ are regarded as operators, and ebC is the
resulting symmetrized diffusion operator. A corresponding trans-
formation will be carried out on P, which we treat as a vector.

The symmetrizing transformation amounts to a change in basis.
Consider bP&1=2eq to be simply an operator that changes the represen-
tation of vectors from one basis to another

bP&1=2eq vj i ¼ v 0j i; bP1=2
eq v 0j i ¼ vj i ðE69Þ

with bC acting on jvi and ebC acting on jv 0i

bC v1j i ¼ v2j i; ebC v 0
1

!! 5
¼ v 0

2

!! 5
: ðE70Þ

Under the symmetrizing transformation, the eigenvalues of the
diffusion operator remain unchanged, while the eigenvectors of ebC
are those of bC multiplied by P&1=2eq :

bC mj i ¼ k mj i; ebC m0j i ¼ k m0j i ¼ kbP&1=2eq mj i: ðE71Þ

RegardingP as vector (expanded, for example, as a sum of Wig-
ner rotation functions), the application of the symmetrizing trans-
formation to P within the above framework is straightforward.
Explicitly, from Eq. (E69), we have

eP ¼ bP&1=2eq P;

eP X; tjX0ð Þ ¼ bP&1=2eq ðXÞP X; tjX0ð Þ
ðE72Þ

and the diffusion equation (E67) becomes:

1
.
@ eP
@t
¼ & ebC eP: ðE73Þ

One should avoid becoming overly-concerned with this vector
formalism, however: both P and eP, no matter how they are writ-
ten, are in fact scalars (as is bP&1=2eq , for that matter), and therefore all
the commutation rules of scalar algebra continue to apply. For
example, a separate transformation of the following form may be
convenient:

eP 0 X; tjX0ð Þ ¼ bP&1=2eq ðXÞP X; tjX0ð ÞP1=2
eq ðX0Þ ðE74Þ

and the following diffusion equation is no less valid than Eq. (E73):

1
.
@fP0

@t
¼ & ebCfP0 : ðE75Þ

E.4.2.2. Evaluation of the symmetrized diffusion operator. The evalu-
ation of the symmetrized operator ebC is quite laborious. This can be
done by defining expressions for each of the three terms

bP&1=2eq
cL2

j þcLj cLjU
& '

op

( )
bP1=2
eq ; j ¼ fx; y; zg: ðE76Þ

Explicitly, we have

exp U=2½ +
Z&1=2

cL2
j þcLj cLjU

& '

op

( )
exp &U=2½ +

Z1=2

¼ exp U=2½ + cL2
j þcLj cLjU

& '

op

( )
exp &U=2½ +: ðE77Þ

Applying the operator in Eq. (E77) on a test function f, we have

eU=2 cL2
j þcLj cLjU

& '

op

( )
e&U=2f

¼ eU=2cL2
j e&U=2f
$ %

þ eU=2cLj cLjU
& '

op
e&U=2f
$ %

: ðE78Þ

The explicit expression for the angular momentum operator cLj

is

cLj ¼ &i k
@

@l
& l

@

@k

" #
; ðE79Þ

where the coordinates fj; k; lg ¼f x; y; zg and cyclic permutations
thereof.
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We now explicitly calculate each term in Eq. (E78). To begin,

cL2
j e&U=2f
$ %

¼ &i k
@

@l
& l

@

@k

" #( )2
e&U=2f
$ %

¼& k
@

@l
& l

@

@k

" #
k
@

@l
& l

@

@k

" #
e&U=2f
$ %

¼ l
@

@k
& k

@

@l

" #
k e&U=2 @f

@l
&1
2
@U

@l
e&U=2f

" #(

& l e&U=2 @f
@k
&1
2
@U

@k
e&U=2f

" #)

¼ l
@

@k
& k

@

@l

" #
e&U=2 k

@f
@l
&1
2
@U

@l
f

" #
& l

@f
@k
& 1
2
@U

@k
f

" #( )

¼ l
@

@k
e&U=2 k

@f
@l
&1
2
@U

@l
f

" #
& l

@f
@k
&1
2
@U

@k
f

" #( )( )

& k
@

@l
e&U=2 k

@f
@l
&1
2
@U

@l
f

" #
& l

@f
@k
& 1
2
@U

@k
f

" #( )( )
:

ðE80Þ

Therefore

eU=2cL2
j e&U=2f
$ %

¼ l
&1

2
@U
@k k @f

@l&
1
2
@U
@l f

& '
& l @f

@k&
1
2
@U
@k f

& 'h i

þ @f
@l&

1
2
@U
@l f

& '
þk @2 f

@l@k&
1
2
@U
@l

@f
@k&

1
2
@2U
@l@kf

& '
& l @2 f

@k2
&1

2
@U
@k

@f
@k&

1
2
@2U

@k2
f

& 'h i

8
><

>:

9
>=

>;

&k
&1

2
@U
@l k @f

@l&
1
2
@U
@l f

& '
& l @f

@k&
1
2
@U
@k f

& 'h i

þ k @2 f
@l2
& 1

2
@U
@l

@f
@l&

1
2
@2U

@l2
f

& '
& @f

@k&
1
2
@U
@k f

& '
& l @2 f

@k@l&
1
2
@U
@k

@f
@l&

1
2
@2U
@k@l f

& 'h i

8
><

>:

9
>=

>;

¼1
2

k
@U

@l
& l

@U

@k

" #
k

@f
@l
&1
2
@U

@l
f

" #
& l

@f
@k
&1
2
@U

@k
f

" #( )

þ l
@f
@l
&1
2
@U

@l
f

" #
þkl

@2f
@l@k

&1
2
@U

@l
@f
@k
&1
2
@2U

@l@k
f

 !

& l2
@2f

@k2
&1
2
@U

@k
@f
@k
&1
2
@2U

@k2
f

 !
&k2

@2f

@l2
&1
2
@U

@l
@f
@l
&1
2
@2U

@l2
f

 !

þk
@f
@k
&1
2
@U

@k
f

" #
þkl

@2f
@k@l

&1
2
@U

@k
@f
@l
&1
2
@2U

@k@l
f

 !

:

ðE81Þ

Expanding all terms but the first, we may write the right-hand side
as

1
2

k
@U

@l
& l

@U

@k

" #
k

@f
@l
& 1
2
@U

@l
f

" #
& l

@f
@k
& 1
2
@U

@k
f

" #( )

þ l
@f
@l
& 1
2
l
@U

@l
f þ kl

@2f
@l@k

& 1
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ðE82Þ

Recognizing that

cL2
j f ¼ &ið Þ2 k

@
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we may write the left-hand side of Eq. (E82) as
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Thus

eU=2cL2
j e&U=2f
$ %

¼ cL2
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Proceeding to the next term in Eq. (E78), we note that
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ðE86Þ
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Therefore,
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Grouping terms and again making use of Eq. (E83), we may
write this as
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ðE88Þ

Adding together the terms in Eqs. (E85) and (E88), the whole
operator applied to f becomes:
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We have finally
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ðE90Þ

Now, using Eqs. (E66) and (E90), we may write
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where we have defined the nabla-squared operator as

r2 ¼ cL2
x þcL

2
y þ gcL2

z : ðE92Þ

Note that this r2 operator is not equivalent to the Laplacian (which
is typically represented by the same symbol) unless g ¼ 1. It is con-
venient to replace the operators cLx and cLy with the ladder opera-
torscL$, since theWigner functions are eigenfunctions of the ladder
operators, and this makes computations using ladder operators
quite straightforward. With some foresight, we calculate the follow-
ing quantities,
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ðE93Þ

&1
2
cL2

þ þcL
2
&

& '
¼ cL2

y &cL
2
x ;
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cL$U
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The direct substitution into Eq. (E91) yields
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ðE94Þ

This expression for the fully-symmetrized diffusion operator is
completely general. When the diffuser has axially or spherical
symmetry, the expression becomes simpler. For axial symmetry,
Dxx ¼ Dyy ¼ D?. Then, . ¼ D?; e ¼ 0, and g ¼ Dk=D?. The symme-
trized rotational diffusion operator then simplifies to
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ðE95Þ

For a spherical diffuser, Dxx ¼ Dyy ¼ Dzz ¼ Do, and therefore
q ¼ Do; e ¼ 0, and g ¼ 1:
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ðE96Þ

Appendix F. Nomenclature

y adjoint (transpose conjugate)
T transpose
# complex conjugate
( scalar multiplication or vector cross product, as appropri-

ate to the operands
0 vector dot (inner) product
) direct (tensorial) product
1 tensorial scalar product
^ operator (i.e. ‘hats’ above symbols denote they are opera-

tors, e.g. cA)

1̂ identity operator
1l l( l identity matrix

a constant equal to 1
3 ðDxx þ Dyy þ DzzÞ (also used as an index

in various equations)
j ai eigenstate of a spin-1/2 particle with m ¼ 1=2

b constant equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3 ðDxxDyy þ DyyDzz þ DzzDxxÞ

q
(also used

as an index, and in Appendix E, a constant equal to 1
kBT

)
j bi eigenstate of a spin-1/2 particle with m ¼ &1=2
v0 notation-simplifying constant (see Eq. (185))
vþ2 notation-simplifying constant (see Eq. (182))

dij Kronecker delta function
dðx& x0Þ Dirac delta function, centered at x0
e constant equal to ðDxx & DyyÞ=ðDxx þ DyyÞ
g constant equal to 2Dzz=ðDxx þ DyyÞ

c third Euler angle of the set X ¼ ðh;/; cÞ (also used to de-
note the gyromagnetic ratio, and in Appendix E, a friction
coefficient)

bC rotational diffusion operator equal to 1=q bRebC symmetrized rotational diffusion operator
CðDÞðlÞ l-ranked matrix representation of bC in the basis of the

Wigner functions DðlÞ
nmðXÞ. (Note that the matrix derived

here is in the PAF of the global rotational diffusion tensor
D
_

.)

l
*

magnetic dipole moment
l0 permeability of free space, equal to 4p( 10&7kg m s&2A&2

r
*

gradient ‘del’ operator, equal to @
@x êx þ

@
@y êy þ

@
@z êz in Carte-

sian coordinates
r2 nabla-squared operator, defined as cL2

x þcL2
y þ gcL2

z

X set of Euler angles ðh;/; cÞ that specify a given Euler/Wig-
ner rotation; for example from the laboratory frame to
some other frame

x0 Larmor frequency
/ second Euler angle of the set X ¼ ðh;/; cÞ (also used to de-

note the azimuthal angle in spherical polar coordinates)
jUki wave function of the kth particle in an ensemble
WmðXÞ normalized eigenfunction of the rotational diffusion oper-

ators bR and bC, with corresponding eigenvalues bm and am,
respectively

WðlÞ
m ðXÞ eigenfunction of the RðDÞðlÞ and CðDÞðlÞ matrices of rank l

(see WmðXÞ)
wmðXÞ eigenfunction of the rotational diffusion operator bR
q̂ density operator
q̂bb matrix element of density operator
~̂q density operator in the interaction frame
q constant equal to 1

2 ðDxx þ DyyÞ
r
_

chemical shift tensor
Dr chemical shift anisotropy parameter, Dr ¼ rk & r?
rk component of the chemical shift tensor parallel to the un-

ique axis
r? component of the chemical shift tensor perpendicular to

the unique axis
s time (Used in the change of variables t0 ¼ t þ s in Sections

2.2.3.2 and C.1.)
sc correlation time
h first Euler angle of the set X ¼ ðh;/; cÞ (also used to denote

the polar angle in spherical polar coordinates)

½a; b+ commutator between a and b, equal to ab& ba
A notation-simplifying constant equal to 1

2 ðDxx þ DyyÞ
A
_

tensor containing spatial dependencies of an interaction
(e.g. dipolar coupling) leading to relaxation

A
_
j tensor containing spatial dependencies of chemical shield-

ing interaction for spin j
A
*

magnetic vector potential (Appendix B) or a drift term
(Appendix E)

cA some arbitrary, general operator
cA average value of cA
hcAi (quantum mechanical) expectation value of cA
AðRÞ matrix representation of cA in the basis R
A matrix representation of cA
Aiso diagonal component of the rank-0 (isotropic) Cartesian

tensor Aiso13
am eigenvalue corresponding to the WmðXÞ eigenfunction of

the rotational diffusion operator bC, equal to bm=q
aðlÞm eigenvalue of the CðDÞðlÞ matrix of rank l (see bm)
auv u;v component of a rank-1 antisymmetric Cartesian tensor
B constant equal to 1

2 ðDxx & DyyÞ
B
*

0 static external magnetic field, which defines the z-axis in
the laboratory frame

bm eigenvalue corresponding to the WmðXÞ eigenfunction of
the rotational diffusion operator bR
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bðlÞm eigenvalue of the RðDÞðlÞ matrix of rank l (see bm)
C notation-simplifying constant equal to Dzz & 1

2 ðDxxþ
DyyÞ ¼ Dzz & A

Cðl1; l2; l;m1;m2;mÞ Clebsch–Gordan coefficients
D0
pq p; q element of a body’s global rotational diffusion tensor,

in an arbitrary frame of reference
Dpq p; q element of a body’s global rotational diffusion tensor,

in its principal axis frame (PAF)
Do isotropic global rotational diffusion constant (For isotropic

diffusers Dxx ¼ Dyy ¼ Dzz 3 Do.)
D? principal global rotational diffusion component perpendic-

ular to principal axis of symmetry for axially symmetric
diffusers (The principal axis of symmetry is taken to be
the z-axis, So Dxx ¼ Dyy ¼ D?.)

bDnðhÞ operator representing a rotation of h about an axis n repre-
sented by the unit vector ên

Dk principal global rotational diffusion component parallel to
the principal axis of symmetry for axially symmetric dif-
fusers (The principal axis of symmetry is taken to be the
z-axis, so Dzz ¼ Dk.)

DlðXÞ Wigner rotation matrix of rank l
Dl

kmðXÞ k;m element of the Wigner rotation matrix of rank l; the l-
rank n;m Wigner function

dlkmð/Þ k;m reduced Wigner rotation function of rank l

D
_

global rotational diffusion tensor. The same symbol has
also been used to represent the dipolar tensor in Sec-
tion 3.1.3

E eigenvalue of a linear quantum mechanical operator, i.e.
cH

e exponential (also denoted exp(. . .))
êp unit vector in the p direction (e.g. êx for a unit vector point-

ing along the x-axis)
êij unit vector pointing along a vector r

*

ij

GðsÞ correlation function (see Appendix C)
Gaba0b0 ðsÞ correlation function (see Section 2.3.2)
cH total Hamiltonian
cH0 Zeemann Hamiltonian resulting from the external applied

field, B
*

0
cH1ðtÞ total Hamiltonian for interactions leading to relaxation,

equal to
P

l
cHlðtÞ

cHlðtÞ Hamiltonian for a single interaction leading to relaxation
(e.g. cHDD for dipole–dipole coupling)

cHRFðtÞ Hamiltonian for radio frequency (RF) pulses

!h (reduced) Planck’s constant, equal to h=2p ¼ 1:0545(
10&34 J s

i
ffiffiffiffiffiffiffi
&1

p
(also used as an index)

bI
*

spin angular momentum operator
bIp p component of the spin angular momentum operator bI

*

I spin quantum number (I = 1/2 for spin-1/2 particles; also
denoted by m)

jaba0b0 ðxÞ spectral density function
jki ket in bra-ket (Dirac) notation, denoting the vector or state

with the label k
hkj bra in bra-ket (Dirac) notation, equal to jkiy

hkjji inner product between kets jki and jji
kB Boltzmann constant ¼ 1:3806503( 10&23 m2 kg s&2 K&1

L
*

dimensionless infinitesimal rotation (classical angular
momentum) vector

cL
*

dimensionless infinitesimal rotation (angular momentum)
operator

cL2 dimensionless angular momentum squared operator,
equal to cL2

x þcL2
y þcL2

z
cLp p component of the dimensionless infinitesimal rotation

operator cL
*

cL$ angular momentum raising and lowering operators (a.k.a
ladder/creation-annihilation operators)

M
*

total bulk magnetization of the NMR sample
Mp p component of the total magnetization M

*

M0 magnitude of the magnetization of the NMR sample at
thermal equilibrium

PðX; tÞ probability of finding a body in the orientation specified by
X at time t

P ¼ PðX; tjX0Þ conditional probability of finding a body in orienta-
tion X at time t, given an orientation X0 at t ¼ 0

Rab;a0b0 the elements of the so-called Redfield relaxation matrix
(see Section 2.3.4)bbR relaxation superoperator

RBr ;Bs matrix element for the relaxation superoperator, bbR , in the
bBr; bBs basis (see Eq. (244))

R1 longitudinal relaxation rate, equal to 1=T1
R2 transverse relaxation rate, equal to 1=T2
bR rotational diffusion operator
RðDÞðlÞ l-ranked matrix representation of bR in the basis of

the Wigner functions Dl
kmðXÞ (Note that the matrix

derived here is in the PAF of the global rotational diffusion
tensor D

_

.)
cS
*

spin angular momentum operator (see bI
*

; bIp, and I)
suv u;v component of a rank-2 symmetric Cartesian tensor
t time
T absolute temperature in Kelvins
TL lattice temperature in Kelvins
TrðAÞ trace (sum of diagonal elements Aii) of the arbitrary ma-

trix A
TrbðAÞ partial trace of the arbitrary matrix A over the b variables

T1 longitudinal relaxation time constant
T2 transverse relaxation time constant
Tm
l tensorial spin operator of rank l

UðXÞ diffusive ordering potential, e.g. the potential that orders
diffusers within a liquid crystal solvent

U ‘reduced’ diffusive ordering potential, equal to UðXÞ=kBT
v
*

a vector with Cartesian coordinates vx;vy, and vz

X
_

tensor containing spin dependencies of an interaction (e.g.
dipolar coupling) leading to relaxation

Ym
l ðh;/Þ spherical harmonic of rank l

Z partition function (see Eq. (E63))

PAF principal axis frame, in which the matrix of an operator is
diagonal (and its principal components/eigenvalues are
the diagonal matrix elements)

AAF arbitrary axis frame
LAB laboratory frame
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