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Appendix F.

1. Introduction

A typical NMR experiment consists of a sample of nuclei of spin
# placed in a strong, uniform magnetic field B, (the magnetic field
is taken to be along the laboratory z-axis; B, = By, By = B, = 0 and
# is the nuclear spin quantum number) until the sample reaches
thermal equilibrium. In an external field, the magnetic moment
ﬁ =77 of each spin precesses around By at the Larmor frequency
o = —YBy, where 7 is the gyromagnetic ratio, which depends on
the type of nucleus in question. For each spin, we know the z-com-
ponent of its angular momentum; at the same time, due to quan-
tum mechanical uncertainty, the x- and y-components are
unknown and all possible orientations along the surface of a cone
for ﬁ are allowed. We thus employ the idea of the precession of ﬁ
but the exact location of the vector at any given time cannot be
predicted. Although the model of precession is physically inaccu-
rate, it is a useful analogy to classical mechanics nonetheless. The
z-component of fi, f1,, may assume one of 2.7 + 1 values, each with
corresponding energies separated by hw,. Each energy state (ori-
entation) is populated according to the Boltzmann distribution.
For spin-1/2 (# = 1/2) particles, two energy states are allowed
(two-level system): the spins may have y, components either par-
allel (positive u,) or antiparallel (negative u,) to the external field.

At equilibrium, because each spin in the sample precesses with
arbitrary phase, the components of the magnetic moments in the
xy-plane perpendicular to B, cancel. Moreover, a slightly higher
number of spins populate the lower-energy states, so that the total
(or ‘bulk’) magnetization, M, lies along the z-axis at equilibrium:
My = M,.

Radio frequency (RF) pulses perturb the equilibrium population
distribution, to generate phase coherence among the various spins
(see Section 2.1.1.2). For a given spin, the z-component of angular
momentum is precisely defined, while the x- and y-components
stay indeterminate. Thus, the x- and y- components of the bulk-
magnetization M, and M, oscillate in time.

Relaxation is the irreversible evolution of the spin system to-
wards a steady state [1,2]. For instance, the system returns to equi-
librium after a perturbation by an RF pulse or series of RF pulses.
Traditionally, the approach to equilibrium has been classified into
two broad types - longitudinal relaxation and transverse relaxation.
Longitudinal relaxation, also called spin-lattice relaxation, de-
scribes the dissipation of energy by the spins into their surround-
ings (called the lattice), which tends to restore the equilibrium
population distribution (with slightly more spins in the lower en-
ergy states as dictated by the Boltzmann distribution at a given
temperature), and consequently reestablishes the z-component of
the magnetization (colinear with the external field). Transverse
relaxation, sometimes called spin-spin relaxation, describes the
dephasing (loss of precessional coherence among the spins) that
takes place in the xy-plane, leading to a decay in transverse magne-
tization. Both types of relaxation result from random fluctuations
of local magnetic fields, produced by a variety of intramolecular
and intermolecular magnetic interactions that are modulated by
the stochastic (Brownian) coupling of the spin-system to the
lattice.

Longitudinal and transverse relaxation are each characterized
by a time constant (T; and T, respectively) and a corresponding

relaxation rate (R; = 1/T; and R, = 1/T,). Transverse relaxation
takes place more rapidly than does longitudinal relaxation; that
is, the decay in transverse magnetization (primarily due to a loss
of precessional coherence) takes place faster than the restoration
of the equilibrium magnetization (as a result of dissipation of en-
ergy by the spins into the lattice, thereby restoring equilibrium
populations of the various energy levels). Generally, 2R,>R;,
though exceptions to this have been noted [3,4].

In this review, we shall focus primarily on the chemical shift
anisotropy (CSA) and dipole-dipole (DD) interactions, which are
by far the two most significant interactions contributing to the
relaxation of spin-1/2 nuclei in the solution state. Both are essen-
tially intramolecular interactions modulated by random molecular
tumbling in solution.

Since molecular rotational diffusion and internal dynamics
determine the nature of the stochastic processes that modulate
the interactions contributing to relaxation, an understanding of
the Brownian motion of spin-containing molecules enables one
to determine information regarding their diffusive, shape depen-
dent, and dynamical properties based upon observed relaxation
rates. This determination is the ultimate goal of the theory de-
scribed in this review.

1.1. Outline of the discussion

In the following, we begin by presenting the Wangsness—
Bloch-Redfield [5-15,1] density matrix relaxation theory (Sec-
tion 2), which leads to a discussion of the rotational Brownian
motion that modulates the spin interactions (Section 3) leading
to relaxation. We consider first the rotational diffusion of sin-
gle-domain, rigid molecules rotating within various orienting
potentials that may result from, for example, a liquid crystalline
medium (Section 4 and 5). As a special case, we treat the zero-po-
tential, that is, the diffusion of rigid molecules in an isotropic
solvent.

Next, we consider the results of rotational diffusion theory
within the framework of relaxation theory, in order to predict
relaxation rates measured through NMR spectroscopy. These
models may be fitted to experimentally measured NMR relaxa-
tion data in order to determine the diffusive hydrodynamic
properties (shape, rigidity, etc.) of the macromolecules studied
[16-18]. Throughout this review, our goal is to provide thorough,
detailed, and (where possible) self-contained explanations, start-
ing from first principles. Emphasis is placed upon completeness
and clarity rather than brevity or mathematical elegance. Where
extended calculations or background information obfuscate
the overarching arguments of the review, we make reference
to appendices containing more detailed explanations and
derivations.

Several excellent publications have discussed individual topics
covered in this review at length. However, we felt that a compre-
hensive, ab initio, self-consistent treatise of all theoretical princi-
ples of interest in the calculation of spin-relaxation rates in
modern biomolecular NMR, was lacking. We have attempted to
provide such a treatment in this review. All relevant aspects of
quantum statistics, diffusion theory, NMR interactions and relaxa-
tion theory have been introduced assuming no prior background.
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We focus here on the theory rather than applications providing de-
tailed analytical expressions wherever possible.

2. Density matrix relaxation theory

Consider an ensemble of identical spins in solution, in which
each spin is surrounded by the neighboring spins; the rest of the
universe excluding the specific spins under consideration is re-
ferred to as the lattice or bath. Interactions between the spins
and the external static field of the NMR spectrometer are treated
quantum mechanically. The larger lattice is treated classically with
continuous energy levels due its large number of degrees of free-
dom. The temperature of the lattice is assumed to remain constant,
even as energy is exchanged with the spins (the lattice’s heat
capacity is considered to be infinite).

This treatment describes a weak stochastic coupling between
the two systems (spins and lattice) arising from the modulation
of the local magnetic environment surrounding each spin, due to
the Brownian motion of the particles containing the spins. That
is, each spin, in addition to interacting with the static spectrometer
field, interacts with local magnetic fields (originating from the lat-
tice) that are time-dependent and random due to the molecular
diffusion.

During relaxation, longitudinal (i.e. parallel to the static field)
components of the local fields act to either augment or oppose
the applied field, and thereby cause the Larmor frequencies of
the spins to vary because the spins ‘see’ an external field that var-
ies with time. This process is adiabatic in the sense that there is
no exchange of energy between the spins and lattice, but it con-
tributes to the loss of phase coherence that produces the macro-
scopic phenomenon of transverse relaxation. Thus, stochastic
variations in longitudinal local field components cause transverse
relaxation.

Transverse components of the local random fields, if fluctuat-
ing at a frequency corresponding to the energy difference be-
tween two states of the spin system, may induce a transition
in a nearby spin, with an accompanying and opposite transition
in the lattice. This process is non-adiabatic: the spin system
and lattice directly exchange energy. Since the lattice is assumed
to remain in thermal equilibrium, with far greater population of
the lower energy states, it is more probable that such interac-
tions involve a transition in the lattice from lower to higher en-
ergy, and a spin transition from higher to lower energy, thus
reducing the population of higher energy levels in the spin sys-
tem and ultimately returning it to equilibrium. Thus, fluctuations
in the transverse local field components cause longitudinal
relaxation.

Because the lattice is treated classically, while the individual
spins are treated quantum mechanically, this theory is usually re-
ferred to as semiclassical relaxation theory. The results of semiclas-
sical relaxation theory can be confirmed by a rigorous quantum
mechanical treatment of the problem [1,10], considering the limit-
ing case of an infinite lattice temperature.

2.1. The density operator

2.1.1. Definition and properties

Most relaxation analyses monitor the behavior of bulk magne-
tization, i.e. that of an ensemble of spins in a finite sample. In or-
der to formulate an analytical theory of this behavior and
reconcile it with semiclassical relaxation theory, a quantum
mechanical formalism describing the ensemble of spins is neces-
sary. The mathematical tool used to describe a quantum mechan-
ical ensemble such as a system of spins is the density operator
[19].

2.1.1.1. Description of a statistical ensemble using a density opera-
tor. Consider a statistical ensemble composed of N identical parti-
cles, each described by a normalized wave function
| ) (k=1,2,3,...N) describing its position in a Hilbert space.
Formally, we may consider each normalized ket as corresponding
a point @, on the surface C of a unit ‘Hilbert-sphere’.

We would have complete knowledge of the system if we
knew the exact wave function of each particle, that is, if we
knew {|®;)...|®y)} at all times. Generally we do not know the
exact wave function of every particle; that is, we do not know
the exact location of each ket on C. Instead, we may know the
probability of finding the state of a particle within a surface ele-
ment dS around ®,. Let us denote this probability distribution as
P(Dy).

If the system is in some arbitrary state | @), the expectation va-
lue of any state-dependent operator </ is

(@)=(o

Again, since we do not know the exact state | ®,) with certainty, we

may consider only the average value of (.«7) based on the probabil-
ity distribution of the states | ®;). We denote this with an overbar:

(7) = [ r@oi@i0y ds 2)

ZJ‘(D,(>. (1)

The average is an ensemble average; that is, the average of the
values measured for each member of the ensemble at a given
point in time. Due to ergodicity, the ensemble average may be re-
placed by a time average, where all members of the ensemble are
identical. Note that Eq. (2) accounts for two independent sources
of uncertainty by introducing two corresponding averages. First,
there is the quantum mechanical uncertainty inherent in the mea-
surement process, leading to an expectation value of a given
operator even when the state of a particle is perfectly well known
(i.e. a pure state). We denote the associated average by the ‘().
Second, there is the statistical uncertainty that prevents us from
knowing exactly which state each particle is in when the mea-
surement is taken. This is equivalent to an ensemble average
(or time average for ergodic systems), which we denote with
the overbar.

Now, we expand Eq. (2) in an n-dimensional orthonormal basis
set consisting of kets {]i)} that span the Hilbert space containing
|®y). According to the closure theorem,

S 1l =1, 3)
i=1

where 1, is the n x n identity matrix. Applying the closure theorem
twice, we have

|0 = (Z | i><i);2(z li>(i> D) = Y1) (D). (4)
i=1 j=1 ij=1

o)

(@] |Di) = D (@il (il 1]) | D). (5)
ij=1

Since (i|/|j), (®y | i), (j | ®x) are all scalars, we may rearrange the

terms in Eq. (5):

n

(D] 7 |Dk) =S (17 []) (] Di) (D). (6)

ij=1
Eq. (2) may then be rewritten as

_— n

() = S 71l [ Powjo @i @)

ij
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Eq. (7) defines the density (i.e. probability density) operator p,
which has extensive applications in quantum mechanics:

p= [ P@wjog@yds ®)

2.1.1.2. Selected properties and applications. Property 1 - Operation
on | ®,). Notice that the operation of the density operator on a
state | ®p,) is to scale each state | @) by the projection of | ®,,) onto
that state (i.e. by (@ | ®1,)), and to add each of these scaled kets,
weighted by the probability of being in each state | ®;) (the
integral extends over every possible state, i.e. over the entire
C-surface):

Pl = / P(®) (D | B} D) S, 9)

Property 2 - Hermiticity:
Since the probability P(®;) is real, the density operator is
Hermitian:

. t .
o = ([ Poves) = [Peg@diogas—p. (o)

Application 1 - Expectation values:
Inserting Eq. (8) in Eq. (7), we have

- n

() = > {11) 1Pl (11)
ij

which, using the closure theorem (Eq. (3)) once more, can be writ-

ten as

(@) =3 7ph. (12)

1

which is the trace of the matrix .«/p:

<§/7> =Tr(</p). (13)

Definition 1 - Populations:
The diagonal elements of the density matrix

pi = (ipliy = / P(®y) (/D) S, (14)

are real, and may be regarded as the average probability of finding
upon measurement that the system is in the state | i). For this rea-
son, the diagonal element p; is referred to as the population of state
| i). Notice that from the expectation value of the identity operator,
i.e. o7 = 1, we deduce from Eq. (13) that the trace of the density ma-
trix is equal to unity, which befits probabilities.

Tr(p) = 1. (15)

Definition 2 - Coherences:
The off-diagonal elements

py = (1ol = [ PP @l (16)

in contrast to the diagonal elements, represent averages of com-
plex numbers. Nonzero elements (p;) indicate that, on average,
the correlation is non-vanishing between the two states, |i) and
| j). For this reason, off-diagonal elements are referred to as
coherences.

Application 2: Partial traces

Finally, we make note of the concept of partial traces. For two
non-interacting subsystems a and b with corresponding density
operators p@ (acting in a Hilbert space of dimension m) and p®
(acting in a Hilbert space of dimension n), respectively, the global

system a + b is described by a density operator p®) given by the
direct (tensorial) product of the two constituent subsystems:

P — p@ g Ho), (17)

The global operator acts in an m x n-dimensional direct product
space spanned by the complete set of tensorial products
{1i& | i®)} of the m basis kets {|i”)} (of the space in which
p@ acts) and the n basis kets {| i)} (of the space in which p®
acts). The (total) trace of this operator is given by [19]:

() =S 3 (e () o (i) o)) 9
i@

The matrix elements of the substituent density operator p@ (with
an analogous equation for p®)) are given by

p}ja) _ <i(ﬂ) Ib(a) L"(G)> _ Z <<i(b)) ® <i(ﬂ) )p(ab)<p(ﬂ)> ® ‘l’(b>>>A (19)

ib)

In analogy to Eq. (18), this operation is referred to as the partial
trace over b, Try(...), and enables us to compute from p@ the den-
sity matrix p@ describing the statistical properties of measure-
ments bearing on system a alone (and analogously for system b).
That is,

Tr, (p(ﬂb)) =p9. Tr, (p(ﬂb)) = p(b)‘ (20)

In this article, we concern ourselves with only a narrow subset
of possible density operator applications. Extensive treatments of
the density operator and additional applications may be found
elsewhere [19-23]. The key concept to bear in mind is that the
density operator contains all quantum mechanical and statistical
information necessary to completely describe a general statistical
ensemble of particles.

2.1.2. Time evolution

For the problem of nuclear spin relaxation, we are interested in
the time evolution of the populations and coherence in an ensem-
ble of spins. We therefore seek to derive and solve an equation of
motion for the density operator.

The time evolution of a particle in state | ;) under the influ-
ence of a Hamiltonian # is given by the Schrédinger equation:

0 .~
hop @) = =i Dy) (21)

and therefore, for the bra (adjoint) the corresponding equation is:
7] s
h— (@] = i@ = (D], (22)

since the Hamiltonian is Hermitian, #' = #.
For the time evolution of the density operator, we may consider
only the time-dependent part, and employing Eqgs. (21) and (22)

d . 7] ad ad
heh = h (10 (@) = h(a@mm + |<1>k>ﬁ<<1>k\)
— i O (@ + D) (@] # = ~i(H p— pAH) = ~i[ 7]
(23)

Writing the Hamiltonian in units of h (so-called Planck or Dirac
units), we may write simply

2 p=—il.p] 24)
arp =P

which is known as the Liouville-von Neumann equation.
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Notice that if we expand the density operator in an eigenbasis
{]j)} consisting of eigenstates of a time independent (i.e. static)
Hamiltonian

Hljy = Ejlj), (25)

(given the use of Dirac units, E; are angular frequencies), we obtain
from Eq. (24) by employing closure

& pue= (i — i p) k)
=iy (P k) — i (G| |m)(m|plk), (26)
l m

since (j|#|k) = (j|k)E, = yiEx, where d; is the Kronecker delta
(6 = 1 for j =k, and d; = 0 otherwise),

1o} .
at Pj = 1(Ex — Ej) py- (27)

Thus, under the effect of a time-independent Hamiltonian, the pop-
ulations (j = k) are constant, while the coherences (j # k) oscillate
at the Bohr frequencies (i.e. Ex — E;) of the system.

2.1.3. Product operators: a useful basis set for the density operator

It is often more useful to describe the density operator in a basis
of orthonormal spin-operators (that describe experimentally mea-
surable variables) rather than an eigenbasis of the Hamiltonian in
Hilbert space as described in the previous section. This basis repre-
sents a ket vector in Liouville space. The so-called product opera-
tors [2,24,25] comprise a suitable operator basis used in the NMR
literature.

The product operator formalism is a very compact and intuitive
way to describe the evolution of the density operator. Only the
deviations of the density operator from identity are considered.
This focuses the discussion on the polarization, the part of the den-
sity operator that is manipulated and observed. The influence of
the identity operator on steady-states has been discussed at length
elsewhere [26-29].

For systems with two or more spins, describing the evolution
using spin operators to treat spin systems independently is a valid
approach since most systems treated in NMR are weakly coupled.
This approach, valid in the weak coupling regime, is called product
operator formalism. Product operator formalisms for strongly cou-
pled spins have been described [30].

The density operator can be represented as a linear combination
of a set of basis operators {%,} in Liouville space (as opposed to
Hilbert space in the previous section);

K
pt) => " bi(t) %, (28)
k=1

where the coefficients by(t) are time dependent complex numbers
and K is the dimension of the Liouville space; the dimension of
the Liouville space for N spin-1/2 nuclei is K = 22", where the corre-
sponding Hilbert space is 2"-dimensional.

Following Eq. (13), the expectation value of an operator =/ can
be written as;

K
(F(O) =Tr{p(t) 7} = 3 belt)Tr{ B }. (29)
k=1

The beauty of Eq. (29) is that the time evolution of the den-
sity operator and the expectation value of any operator can be

found by limited trace operations. The basis operators are nor-
malized as

Tr{,@k,@,} = 5,<12N72 (30)

where §y; is the Kronecker delta. The time evolution of the density
operator under the effect of a specific time-independent Hamilto-
nian # can be described from the integration of Eq. (24) as a rota-
tion of the initial density operator po, = p(0) to a new operator
pr = p(t); this rotation occurs in ‘spin-space’ as opposed to ‘real-
space’ (compare to the interaction representation of Section 2.2.2
and Appendix A.3):

ﬁt _ e—i%[poei.//t. (31)

The most practical basis operators to represent the density
operator are the angular-momentum operators, .#,.#, and .7,
(for simplicity we drop the ‘hat’ from the product operators).
For a single-spin (spin-1/2) system, two basis sets can be used:
{1, 7%, 7y, 7.} and {s* 4% 7, 7 }. These basis sets are related
by:

1
_Lgn_ ghy.
Ir=5 (%= I
1
Fy=gi (S =5, (32)
Iy = 1 J g );
B X*i(" ++’ *)7
1= %(ﬂ + 7). (33)
For one spin-1/2 system with two eigenstates, | o); (m = +1)
and | f); (m = —1), the basis operators can be represented as:
I = o (;
I7 = |B)(B;
I = |o)(Bl; (34)
s =)ol
and
S By = ) (BIB) = |o);
I o)y = |B) (|t = |B). (35)

The usefulness of product operators becomes evident when a
weakly-coupled system of two spin-1/2 nuclei is considered. This
system has four eigenstates, | o), | of), | fo), | BB). There are four
population terms in single-element operator basis, there are eight
single-quantum transitions where the state of one spin is unaf-
fected while the state of the other spin changes; two double-quan-
tum transitions where both spins change spin states in the same
sense; and two zero-quantum transitions where both spins change
their state in an opposite sense. Instead of manipulating sixteen
matrix elements to describe the evolution of the density operator
one can use sixteen simple product operators. The evolution of
the spin system in a typical NMR experiment is often limited to a
smaller subspace spanned by a few of these product operators.
The product operator basis is therefore much more practical.

The sixteen cartesian product operator terms for a two-spin sys-
tem are

11 Iy Sy I, Fx Sy S
23S, 29y, 20,95 25.Fx 20,9y
205 Fx  29yFy  29Fy 29,y
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The use of product operators becomes even more favorable for
larger spin-systems.

2.2. The master equation of relaxation

2.2.1. The Hamiltonian

Description of the time-evolution of the spin ensemble is gi-
ven by the Liouville-von Neumann equation (Eq. (24)). In order
to use this equation to describe the trajectory of the density
operator during an NMR experiment, we have to first define
the Hamiltonian of the system during the experiment. Then we
solve for the density operator p at any given time t as it evolves
under the influence of this Hamiltonian. The Hamiltonian of a
spin system during a generic NMR experiment may be defined
as:
H(t) = Ho+ AH1(t) + Hre(t), (36)
in the laboratory frame, where # is the main time-independent
static Hamiltonian describing the Zeeman interaction of the spins
with the external field By, ?Rp(t) represents the interaction with
time-dependent radio frequency fields, and #+(t) is the Hamilto-
nian for the various interactions leading to relaxation:

=Y A ul). (37)
u

The index u denotes the various spin interactions, e.g. dipolar cou-
plmg (DD), chemical shift amsotropy (CSA), etc. The magnitude of
#, is much larger than that of 7 (t) for the external field used
in normal NMR experiments. In this case, By defines the axes of
quantization and #4(t) is taken to be a perturbation to the main
Zeeman interaction.

In the laboratory frame, #(t) is a stationary random function
of time with zero average. If #; (t) does not have a vanishing aver-
age - i.e. it has some constant offset - then the non-zero, constant
part can be added to a redefined static Hamiltonian #,. The pre-
cise form of #4(t) will be discussed in Section 3.

2.2.2. The interaction representation and frame transformation
For a system evolving in the absence of RF fields i.e. #r(t) = 0,
the Liouville-von Neumann equation (Eq. (24)) becomes

O il 0).p) = ~i[ Fo + 71(0).)] (38)

Solving Eq. (38) is simplified by transforming from this Schro-
dinger representation to the interaction representation, which
corresponds to a change of reference frames in classical mechan-
ics. The interaction representation or interaction ‘picture’, some-
times referred to as the Dirac picture, is an intermediate
between the Schrédinger and Heisenberg representations in
quantum mechanics [31]. In the Schrédinger picture, operators
are assumed to be constant while the wavefunction’s state vector
evolves with time, whereas in the Heisenberg picture, state vec-
tors are assumed to be constant and it is the operators that carry
time dependence. In the interaction picture, the state vectors and
the operators each carry part of the time dependence of
observables.

For a static Hamiltonian ?/?0 that contains only the Zeeman
interactions, with By, the interaction frame is equivalent to one
rotating relative to the laboratory frame such that the effects
of the static Hamiltonian #, appear to vanish. When
Hre(t) # 0, during an RF pulse, one may first transform to a
rotating frame, so as to make E‘?R}:(t) time-independent. If the
RF field is applied on resonance (i.e. wgr = @wp), the rotating

frame coincides with the interaction frame. The interaction rep-
resentation moves the time dependence of the state vector due
to #, onto the operator #(t), and thus singles-out the effect
of the perturbation #(t).

Transformation to the interaction frame is done by transform-
ing all operators appropriately (see Appendix A.4). Specifically,
any arbitrary operator expressed as 2 in the laboratory frame,
where 9 # #,, is given in the interaction representation as

L5 = el e (39)

lo)

Note that since #, is Hermitian, % = el*ot is a unitary operator. As
mentioned above, operators that have no time dependence in the
lab (Schrédinger) frame, may become time dependent in the inter-
action frame (as should be expected physically since the interaction
frame rotates in the lab frame).

In the interaction representation, Eq. (38) transforms to

52p(0 = =i 7200500 (40)

Eq. (40), which represents the Liouville-von Neumann equation in
the interaction frame, is derived explicitly in Appendix A.

2.2.3. Derivation of the master equation
2.2.3.1. Solution to the Liouville-von Neumann equation. Eq. (40) is
solved by grouping like terms and integrating:

p(6) = —i| 710 (0 de.
(41)

b= p0) -1 [ [710).pi0)] .

This expression for the density matrix is ‘recursive’ in the sense that
the p(t') term in the commutator is defined by the formula for p(t),
of which p(t’) itself is a part. In other words, we may write p(t’) asa
function of p(t”), which is a function of p(t”), and so on. Thus, we
may expand p(t) as

h<}l!
~
—
=
Il
h<}l!
~
2
|
o
.
=~
—
—
>

o-i /0 ‘ F% ", ﬁ(t”)] dr”} dt,
/ dt
[ [%r’),[ (), P(0 )Hdr "

where we have explicitly written terms up to second order. We may
ask, at what order might we truncate the expansion such that our
calculations are still acceptably accurate? We consider a short time
t = At, during which the density matrix does not evolve signifi-
cantly from its t = 0 value (i.e. that p( ) ~ p(O)) and in that case,
terms higher than second order have negligible contribution (this
approach thus qualifies as time-dependent, second order perturba-
tion theory). In the discussion below, we will examine the scope of
validity of this second-order approximation. Skinner et al. [3,4] have
treated the problem of the relaxation of a two-state system, consid-
ering terms up to fourth order in 4 (t).

Taking the time derivative of Eq. (42) truncated to second order
yields:

(42)
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2.2.3.2. Ensemble averaging and correlation. Eq. (43) is accurate for
an infinitesimally small system. In a large sample, however, remote
regions of the ensemble relax independently due to the random
nature of 7 (t). Since #:(t) is a random operator, different re-
gions do not in fact evolve under ‘identical’ Hamiltonians. As a re-
sult, even if all regions have identical p(0), for times t > 0, each
part of the sample will have a different, randomly-determined
p(t). To describe the macroscopic sample as a whole, we take the
ensemble average over all terms, which we denote with an
overbar:

E(t) {//1( ),5(0)} - '/o[ [il(t), [%(ﬂﬁ(@” dr.  (44)

Note that for an ensemble-averaged density matrix, the off-
diagonal matrix elements (j # k) in Eq. (27) - i.e. the coherences -
average to zero at equilibrium, which is consistent with the phe-
nomenological description given at the beginning of the article,
describing complete precessional dephasing at equilibrium. On
the other hand, the diagonal elements (j = k) in Eq. (27) - i.e. the
state populations - are unchanged during ensemble averaging. As
described, upon perturbation by an RF pulse, the coherences be-
come non-zero, and the populations change, with those matrix ele-
ments corresponding to the higher-energy states increasing in
magnitude. In terms of the averaged density matrix, relaxation
may then be viewed as the process whereby the off-diagonal ma-
trix elements vanish (precessional phase coherence is lost) and
the diagonal elements are restored to their equilibrium values,
thus indicating the restoration of energy state populations and
the equilibrium bulk longitudinal magnetization.

Assuming ergodicity, the instantaneous ensemble average of

the Hamiltonian 7#; (t) is equal to its time average, which as noted

above is zero. This assumes that 7 (t)p(0) = #1(t) p(0); that is,
that averaging over the Hamiltonian and density operator may
be done separately. We show this to be true presently in our con-
sideration of the second-order term. Thus, the first term on the
right-hand side of Eq. (44) vanishes and we have:

@_/Ot {il(t), {il(t'),fom)” dt. (45)

Writing the integrand explicitly gives

[9?1 (®), [?(t’»ﬁ(O)H

— ) [?}wt')ﬁ(m} - [?71<r'>,ﬁ<0>] 71 (0)

= TA(Q) T (E)p(0) — 1 (OP(O) T 1(¢) — H1(E)P(0) H 1(8)+ (0) #1(£) 7 1(¢)

= TA(Q) T (O)p(0) — 1 (OP(O) T 1(¢) — 1 (E)P(0) H 1(8)+ (0) #1(£) 7 1(¢)

= (O F | (t+T)P(0) = 1 (OP(0) # | (t+7)

AL TPO) A () + HO) | (E+T) A1 (8),

(46)

where on the last line we have made use of the fact that all Hamil-
tonians are Hermitian, # (t) = #(t), and introduced the variable
T =t' —t. We have written Eq. (46) as such to emphasize that each
ensemble average is actually a correlation function (see Appendix
C): the correlation of the Hamiltonian with itself over time T on
the one hand, and that between the Hamiltonian and the density

operator over time t (or t + 7) on the other hand (there is in princi-
ple a correlation between the initial value of the density matrix and
the Hamiltonian since p(0) depends on the behavior of 7 (t) before
t=0).

The correlation of the Hamiltonian with itself is significant for ©
on the order of 7. (the auto-correlation time of the Hamiltonian) or
smaller. Similarly, the correlation between the Hamiltonians and
p(O) is nenglblfJor t > T.. Assuming t > T., wWe may average over
p(0) and 7 (t) # (t + 1) separately in Eq. (45), since if there is no
correlation between these two functions, the ensemble average
of the products will be equal to the product of the ensemble aver-
ages. This leads to:

7:_/OOO {il(t), {T;?l(urr),i)(t)”dr. (47)

2.2.3.3. Approximations and limits of validity. Given that averaging
over the Hamiltonians and density operator may be done sepa-
rately, and based on our assumption that t = At is small enough
that the evolution of the density operator is infinitesimal, we
may replace p(0) with p(t) in Eq. (47). The fractional variation of
the density operator is approximately

p() - p(0)|
- = H / Ho( 1(t+ r) dt
20 H po H
(48)
where ||...| indicates the magnitude of an operator, which is often

measured by the norm. The norm of an operator 7 is defined as the
square root of the absolute value of the largest magnitude eigen-
value of =/1</; for a Hermitian operator </ such as a Hamlltonlan
this is simply the largest absolute value of an eigenvalue of 7. The
trace may similarly be used as a measure of operator ‘strength’,
inasmuch as the trace is frame-independent, and clearly represents
the sum of eigenvalues in a representation where the operator is
diagonal. Since values of the correlation function for which 7 > 7,
contribute negligibly to the integral, we can justifiably write

—__ 2
~ tHy/l(t)H T.. (49)

If the fractional increase is small (i.e. t|| #1(t)||* T. < 1) in addition
to the condition t >> 7. being satisfied, then the errors introduced in
replacing f)(O) with f)(t) in Eq. (47) are negligible.

Another result of the requirement that t > 7. is that we may ex-
tend the upper limit of integration in Eq. (47) to infinity. As men-

tioned above, for values of 7 > 1., the correlation # (t) # {(t + 1)
decays rapidly to zero, and thus the contribution to the integral in
Eq. (47) at these values of 7 is also minuscule. Therefore, extending
the upper limit to infinity does not significantly affect the value of
the definite integral. Note, however, that while we assume ¢ to be
large enough to extend the limits of integration (since it is orders
of magnitude larger than t.), it must still be small enough that our

original assumption p(t) ~ p(0) holds as discussed above. Since we
are considering t > 7., p(t) for individual spins comprising the
ensemble would have evolved under the influence of il (t) over
several cycles. This leads to an averaging of the influence of :7;\1 (t)

on p(t) for individual members of the ensemble resulting in essen-
tially the same p(t) for each member. Therefore we can replace

E(t) with f)(t) since the individual density operators for each mem-
ber of the ensemble is approximately the same.
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We now have

ot

:7/0“ {;1(0, Ph(tﬂ),ﬁ(t)” dr, (50)

which is known as the master equation of relaxation.

Now we consider more closely our assumption that terms be-
yond second order may be neglected in our expansion of Eq.
(42). This proves to be a useful exercise because it illuminates a
relationship between the strength of the Hamiltonians that lead
to relaxation and their associated correlation times. Retaining
terms beyond second order, Eq. (44) can be written as

dp(t) _
a2 (51)
where

A= "'W; (52)

An = —i/ot [,/N;?l(t),AM(t’)} dt’.

Successive terms contain increasing factors of the Hamiltonian and
additional integrals, and thus the relative strengths of successive
terms is

[Anll

t) dt
A~

~ |70 = (53)

which must be very small for our second-order truncation to be per-

missible, 4/ \|;?m(r)\|zrg < 1, and this requirement is satisfied for
short 7.

Most biomolecular systems currently studied in NMR are con-
stituted by ensembles of spin-1/2 (*H, 3C, >N and 3'P) and have
molecular masses below 100 kDa (7. < 50 ns) so that the require-
ment for short 7. is never a problem. However, we should inspect if
this condition holds for one of the most challenging systems that
has been studied by liquid-state NMR so far. The strongest dipolar
interaction in a biomolecule arises between two protons in a
methyl group. These two protons are separated by about 1.8 A.
The amplitude of the dipolar Hamiltonian, scaled by 0.5 due to
the rapid methyl rotation, is:

|#1] ~ 6.5 x 10* s71. (54)

For example, for ['3C, 'H] correlations observed in solution for
the protease ClpP at 5 °C [32], 7. is about 500 ns (5 x 1077 s). Thus,

#1]]Tc = 3.25 x 1072 <« 1, (55)

which agrees with the above requirement.

2.2.3.4. Correction for finite bath temperature. The preceding discus-
sion considers a density matrix that describes only the spins, there-
by ignoring the bath and the coupling between the spins and
lattice. As a result, the master equation (Eq. (50)) predicts an equal
distribution of the spins among all energy states at equilibrium,
and thereby implies an infinite lattice temperature, which is clearly
not physically accurate. To take into account the finite lattice tem-
perature T;, we make the following replacement

Pt) — Pe(t, Tr) = p(t) — peq(T1), (56)

where peq(T}) is the thermal equilibrium value of the density oper-
ator, determined by the Boltzmann distribution:

e~ o/ksT

Peq(T1) = W

Peq(T1) = (57)

where kg is the Boltzmann constant. This is a purely phenomenolog-
ical, ad hoc correction, but it may be confirmed by a rigorous quan-
tum mechanical treatment [1,9,10,33]. Such an approach considers
a total Hamiltonian

A = ?fo,s + 3//\"0; + 3/?1.5L7 (58)

where ;//?0_5 and %OAL represent the unperturbed Hamiltonians of
the spin system and the lattice, respectively, and #; represents
the coupling between them. Assuming that the thermal equilibrium
of the lattice is not significantly altered by spin transitions (weak
coupling between spin and lattice i.e. #; is small), then its state
may be described by the density operator

e~ o1/ksTL

W (59)

(L
p():

and the total density matrix of the spins and lattice is then written
as the direct product

pe =pY e p® (60)

where p© = p is the density operator for the spin system. One then
proceeds in a manner analogous to that of the preceding semiclas-
sical derivation, considering the evolution of p® in an interaction
representation by employing partial traces as described in Sec-
tion 2.1.1.2 (the mathematics are by necessity significantly more in-
volved). For the case of high temperatures (i.e. large T;), which is
clearly assumed for spins in the solution state, one eventually ob-
tains in place of Eq. (50):

%: _/Ox {il(t), {ﬁl(tﬁ),f)(t)—ﬁeq(ﬂ)ﬂ dr, (61)

LS)

thus validating our ad hoc correction of Eq. (56).

2.2.4. Summary of semiclassical relaxation theory
The master equation of relaxation is given by

gtﬁ(t T,) = /Ox PAVﬁ(t), P%(tﬂ),i)c(r, TL)” dr, (62)
where:

e The overbar denotes an ensemble average. Averaging of the
Hamiltonian and the density operator are done separately.
e Truncation of the expansion of Eq. (42) at second order requires

that \/ ||+ (t)]*2 < 1.

e t must be short enough so that the evolution off) is negligible,
but long as compared to the correlation time. In conjunction
with the preceding requirement, this implies that the master
equation is valid provided that

Tt {H./}?](t)Hzrc} 7]. (63)

o The replacement p(t) — pc(t,T) = p(t) — Peq(Ty) is an ad hoc
correction made to account for the finite lattice temperature,
which may be rigorously justified through quantum mechanical
treatment of the entire system of bath and spins.

Physically, Eq. (63) implies that under the present framework
we may not seek information for timescales on the order of 7. or
shorter, and thus the master equation is only useful for situations
in which the relaxation times T, and T, are much longer that the
correlation times 7. of the processes leading to relaxation (the pro-
cesses represented by #; (t)). This makes semi-classical relaxation
theory especially well suited to the treatment of spins in the solu-
tion state.
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2.3. Redfield theory: the master equation in matrix form

2.3.1. Expansion in an eigenbasis
We now transcribe Eq. (50) into matrix form. Let |«) denote one

of a set of eigenstates of the unperturbed Hamiltonian #,, with
corresponding eigenvalue (i.e. energy, which takes the form of an
angular frequency since we use Dirac units) E,, not to be confused
with the spin eigenstate of the Zeeman term. This is the represen-
tation of the master equation in Hilbert Space. The complete set of
eigenstates {|«)} forms a suitable eigenbasis in which to express
aﬁ(t)/at. Using Eq. (46) as a guide, we may express each matrix
element of the integrand of Eq. (50) as

| 20| (e 0500 |10

— (2 HA(O) 1+ VPO

(PO o (E+T) ()]

A OPE) F (E+ T

o), (64)

(o A (E+ TP A

and through repeated application of the closure theorem (Eq. (3))
we may rewrite this expression as

| 10| a6+ 0,500 | )
=3 /fl

[

IO

BF 7

=S (| A ()1

BB

=S @A (E+ DB BB B 1 (D]o0), (65)

BB

(O 11+ T BYBIDOIB) (B]o0)

B B1 A (€ +0)12) (1 1 ()]

BIPOIB) B 71 (¢ +)[er)

where the summations extend over all eigenstates of 3’?0.

Next, writing the matrix #(t) as a function of the Hamiltoni-
ans in the laboratory frame, #, and #4(t) (see Eq. (39)), and
employing closure, we see that terms of the form (0|7 ;(t)|)
may be written as

(1 (O1) = (e 1 (B)e 7] )

=> (et o 2) (2171 (0) ) (e o ). (66)

Recognizing (see Appendix A.1, Eq. (A5)) that
eii%’gt|}v> _ eiilz‘,;t|/~h>7 (67)

we may simplify Eq. (66) to read

D (e A (A (1) (e |B). (68)

Iy
s

(o) 71 (8)|) =

Since (o|f) = d,5 (where d,4 is the Kronecker delta function), the
only non-zero terms in Eq. (68) are those for which /= o and
/' = B, and thus

(|7 1(0)1) = (o 71 (D) e o, (69)

Inserting Eq. (69) into Eq. (65) and writing each matrix element
(BID(D)IF) simply as py (t) we have

(ol | A

<r>[%<t+r> 0|1
=D (A ()

BB

+Z Z ol B) Pyp (t

BE

2YIA A (E+T)1B) Py (1) (B B @i B

) (B A1 (E+ DAY A A 1 (6)]or) @B ittt

=S A O1B) P (£) (B A1 (E+T)|or) el Bt iy (040
BB

=S UAAC+T)|B) Py (0) (B A1 (8)] o) € FE D) @iy E
G

(70)

2.3.2. Correlation functions and spectral densities

We now introduce the correlation function G,;,;(7) and the
corresponding spectral density ji,, () (see Appendix C), defined
by

Goporpr (T) = (0| 1 (0)|B) (B %(t+r)|a'>,
ja,w / Ga,m,jf e iotdr,

Since terms of the form (o|.«7|g) in Eq. (70) are scalars we may
rearrange them freely in the form of correlation functions. More-
over, since the ensemble averaging of the Hamiltonian and the
density operator are done separately, we may write Eq. (62) as

ar X Gugs(T)e (1B el

(71a)
(71b)

- ©| 1 Gy (T e i(Ei—Ep ) Toi(Ey—Ey )t .
8paair(t):*z/ o9 2 Gt (T) Py ().
gp 70 | Gy (T) e—i(EI, ~Ey)t ei(Eg ~Eg+Ey—Ey )t

7Gﬂ,wﬁa(.C)e—i(Eﬁ—E,()Iei(E«—E/ﬁEI,,—Ex/)t
(72)

Recognizing that each term in the bracket is composed of a
spectral density multiplied by an exponential,

5ouﬁ’ ijx)_/f/l (E/f - Ei)ei(EFEﬁ)[

_"_5&/; Zj;,(x/),/ﬁ’ (E/ _ Eﬁ,)ei(Eﬁr —Ey/)t

P> p®. (73)

BS g (Ew . E/;r) ol (Ex—Eg+Ey—Ey )t

_jﬁ/wm ( E;— Ea) ei(E,(—E/;JrEﬁ/ —Ey )t

Notice that the exponentials in the first two bracketed terms in
Eq. (73) may be replaced by e'®+~Es+Ev—Ex)t without significantly
affecting their values. We may therefore write

51’/1’ Zjai./f). (E,; - E;.)
+0ug Zj/loc//‘./}’ (E;—Ep)

b i apop (Eéx’ - E/f’)
~Jpapa(Ep —Ex)

% ei(Ea—E,,JrEﬁ/ —Ey )t ﬁ/i/f’ (t).

(74)

2.3.3. The dynamic frequency shift
Since 1 (t) is a stationary random operator, from Eq. (C24) (see
Appendix C) we can write the following expression:
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. 1 .
Jopup (@) = j]z/}a’/}’(w) — Ky p (), (75)
where

mem=/'mwmwwwL (76a)
Koy () = /0 Gopoy (T) sin (0T)dr. (76b)

are both real functions.

The imaginary term iK,;,y (@) in Eq. (75) gives rise to a shift in
resonance frequency known as the dynamic frequency shift [34-36].
This effect is usually small enough to be neglected, although for
certain interactions (e.g. quadrupolar) that are comparable in mag-
nitude to the Zeeman interaction %0, it must be accounted for
[37]. This term will be ignored in the present context. Alterna-
tively, one may take the approach mentioned earlier, redefining
the static Hamiltonian in such a way that the dynamic frequency
shift is included in #,. Finally, we may remark that only the real
part of ji,, (@) contributes to the evolution of the spin system to-
wards equilibrium, that is relaxation.

Considering only the real part, we may simply replace

joc/!az’/f’ ((,O) - %Jc(/foz’/f’ ((l)) in Eq (74)

2.3.4. The Redfield relaxation equation

We now define the rate constants R, ,.», the elements of the so-
called Redfield relaxation matrix, and rewrite Eq. (74) in an even
more compact notation as the Redfield relaxation equation:
0P (t) i(Ex—Ep+Ey—Ey )t 7
'%T‘%Mwﬂ PE D Dy (t), (77)
where

R 1 Joprp (Ex —Ep) +Jpaps (Es — Ex)
W T | = Sy Z]:x/:/;;. (Ep —E;) — 0 Z]/‘.w,‘,/ﬂ (E:—Ey) |

(78)

Noting as before that the Redfield Eq. (77) implies an
infinite bath temperature, we make the correction, Eq. (56),
p(t) = pc(t,T) = p(t) — Peq(T1). Note that the Redfield formulation
makes the implication of infinite temperature somewhat more
clearly than did the operator formalism used in the preceding sec-
tion: because Ry, 5 = Rypax (that is, the probability of transition
from | o) to | B) is equal to that of the opposite transition from
| B) to | &) — the principle of detailed balance), the (uncorrected)
Redfield equation clearly describes an equal distribution of spins
among the various energy states at equilibrium.

Finally, we introduce the secular approximation as follows. The
terms in Eq. (77) for which E, + Ey # E; + E,, will have rapidly fluc-
tuating values, oscillating at frequencies much greater than the
rate of evolution of the density operator under the terms R, .
As a result, their contribution will average approximately to zero
in the summation. Therefore, we may neglect such terms, keeping
only the so-called secular terms for which E, + Ey = Eg + E, (‘sec-
ular’ is used here in keeping with its Latin origins, referring to a
span of time). In the context of the secular approximation, the
oscillations of the secular terms take place on a secular timescale
as compared to the comparatively-fast fluctuations of the non-sec-
ular terms, which are discarded. The exponential for the secular
terms will always equal unity, and we may then write the secular
approximation of the relaxation equation:

W = Ry P (£,T1) (79)
B

Note that the secular approximation may be violated under cer-
tain conditions, typically when the difference of energy of two
eigenstates is not much larger than the relaxation rates [38]. Eq.

(79), which represents the Redfield equation in Hilbert space is
rarely used in the context of calculating spin-relaxation rates. In-
stead the Redfield equation in Liouville space (i.e. in the product
operator basis) is widely used. This formalism will be treated in
Section 6.

3. The Hamiltonians of relaxation

We now present a systematic approach to represent the Hamil-
tonians 7/?,[ appearing in Eq. (37), in the derivation of the correla-
tion functions (Eq. (71b)), and ultimately the Redfield Relaxation
matrix in Eq. (79). The method of presentation of the theory in this
part is drawn in large measure from the excellent discussions pro-
vided by Mehring [39] and Smith et al. [40-42].

3.1. General treatment of Hamiltonian operators

3.1.1. Tensor representation of Hamiltonian operators

Any scalar may be written as a scalar (‘dot’) product of vectors
or tensors. Thus, the scalar interaction energies represented by the
various Hamiltonians //?,, that comprise ;A//’(t), Eq. (37), may be
written as scalar products, containing terms such as

3w
r (”’ “f) (80)
spin—spin interaction

L - Bo

spin—field interaction
As will be discussed below, all the Hamiltonian operators of interest
may be constructed by replacing the classical magnetic dipole mo-
ment with its quantum mechanical equivalent, i.e. replacing ﬁ with

yh 7 (or simply y # when working in units of h as in the preceding

sections). For simplicity the vector sign is dropped from 7.
S = (Jx, 4y, .#;) is the spin operator for the given nucleus, and 7
is the gyromagnetic ratio. We will limit ourselves to the case of
chemical shielding (ﬁ,, = #¢s) for spin-field interactions, and to
dipolar coupling (?# = #pp) for spin-spin interactions.

Employing scalar products, we may develop a formalism in
which we cast the single spin-external field interaction Hamilto-
nian in the form

Hls = Cls 51 A - By, (81)

for the jth spin, where CjCS is a scalar constant, and Al is a tensor (the
chemical shielding tensor) which we will construct appropriately to
describe the given interaction. Explicitly,

o Ao By Az /By
Hls = Cis(H 7 5) - | B Ky A, || Boy |- (82)
A, H, A,) \Bo

Similarly, for a spin-spin interaction between the jth and kth spins
we may write the Hamiltonian as

A = O A (83)
Ky Ry AL\ [t

Ay = Cho (#4 7, 7L) - | Al A A || o |- (84)
Ay Ky AL) \7

Using a more compact notation we have for the interactions of a
spin with the magnetic field:

Hes=Ces D S ALy Bow. (85)

u,v={xy.z}
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For the spin-spin interactions,

Ay =Chy S AN, S (86)

uv
u,v={x.y.z}

We may write Egs. (85) and (86) somewhat more elegantly as

A =C AoX, (87a)
A = Ak o X (87b)

respectively, where ® denotes the scalar products between two ten-
sors, which, in complete analogy with the vector dot product, is de-
fined as

AGX = AuoXu. (88)
u,v={xy.z}
In writing the Hamiltonians in Eq. (87) we have simply col-

lected the various terms .#JB? and .#/.#* in Egs. (85) and (86),
respectively, organizing them in 3 x 3 matrices X/ and X#:

7],( Box ﬂx By f{( Bo;

X =| 7 By # By 5 By (892)
S}, Box S Boy S, By

Xiw =7 Bow,
R AN

Xk=| A sk A gt gk, (89b)
LIy BIy S I

LI
X, =5 I
Formally, these matrices represent second-rank tensors formed
from Kronecker (i.e. tensorial or dyadic) products between two
vectors (i.e. first-rank tensors):
R S,
i J
X=12
7

® (Box.Boy. Boz) = # @ By (90a)

7z
S ,
X = ﬁy
¥

z

® (I), 15, 7% = A @ I (90b)

We emphasize at this point that these manipulations are purely
mathematical, executed for the purpose of elegance. We have
worked with some foresight of our ultimate concern with NMR
relaxation and molecular tumbling. In particular, we will usually
write the Hamiltonians such that all spin interactions are retained
in X, while the spatial dependencies (concerned with molecular
motion leading to the stochastic time-dependence of A1)
are contained in A.

Both A and X are rank-2 tensors and they can in general be writ-
ten as the sum of three irreducible cartesian tensors of rank-0 (sca-
lar), rank-1 (antisymmetric tensor; a; = —q;) and rank-2
(symmetric tensor; s; = ;).

. Axx Axy sz 1 0O 0 Axy  Qxz
A= [Ayx Ay Ayz} _Ais{o 1 0} + {ayx 0 ayz]
A Ay Az 00 1 G ay 0

Sy Sxy  Sxz
+ | Syx Sy Syz | (91)

the ranks of the matrices on the right-hand side are 0, 1 and 2,
respectively, and

1
Aiso = (Axx +Ayy +Azz) = —TI'(A),

3
(Auw — Aw), (92)

Ay =

1
3
1
2
1

Supy = j (Auv +Avu - 2A1505uv)-

The specific elements of the tensors depend on the coordinate
system that is used to express the Hamiltonian. In the principal
axes frame (PAF) of the spatial tensor, A, the rank-2 component
is diagonal, thus the PAF will be used to express A. Depending on
the interaction, the second tensor X contains a dyadic product of
spin operators (suitably normalized) or a spin operator with the
magnetic field. The ultimate goal is to express each Hamiltonian
in the laboratory frame where time dependence comes from the
molecular motions. _

The various components of the A (spatial) tensor may be writ-
ten as [13,39,40]:

) = () Au + Ay +Az)
A =~ (%) Ay~ An)

Ag(PAF) = — T4,

A%(PAF) = 0,

AT'(PAF) = 0,

A)(PAF) = \f3[A., — 1Tr{A}],

As'(PAF) = 0,

AT (PAF) = \[H(Av — Ay),
(93)

which we have shown in both cartesian and irreducible spherical

tensor forms.

In the same manner, the X (spin) tensor can be written in spher-
ical coordinates in the laboratory frame:

XB(LAB) = — (2 ) 0+ X,y + Xe

XJ(LAB) = <é) Xy — Xyx),
Xi'(LAB) = G) Kax = Xz £ i(Xey = Xy2)],
(94)

1
X9( LAB) = (76) BXes — (Xoe + X,y + X)),
1 X
Xlil (LAB) = ¥ <§> Xz + X £ i(X)z + Xg)],

X3%(LAB) = (%) Xax — Xyy £ 1(Xyy + Xyx)]-

It is possible to write the spatial tensor A relative to any arbitrary
axes system, (AAF), using the Wigner rotation matrices (see Appen-
dix D.5):

1
Al'(AAF) = " D),

o (2)AT" (PAF) (95)

m'=-1|
where [ is the rank, m is the order, and Q is the set of Euler angles
defining the orientation of the PAF with respect to an arbitrary axis
frame (AAF).
Since the Hamiltonian is time-dependent in the LAB frame, a
time-dependent rotation must be performed to express A in this
frame:

1
Al'(LAB) = > Dj,

m,m’

[Q(0)]A]" (AAF). (96)

m=-1

In spherical coordinates, the scalar product of two tensors can
be written as:
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1 1

AOX =Y (1)"ATX "= (-

m=-1 m=-1

1)"A; "X, 97)
Summing over all the components of the rank-2 tensor we have;

SPNE

=0 m=-1

—_ 2
AOX=> A-X = 1)"A "X (98)
=0

Combining Eq. (98) with Eq. (81) and Eq. (83), f/f\’y may be ex-
pressed as

gl;u = Cu Z ZAquuvy
u v

Hp=CuAGX, (99)
2 ]

Hu=Cud Y (~1)"AX
1=0 m=-1

The tensors A and X have nine distinct components (in general).
Any constant (i.e. a,b) can be factored out from the tensor
terms, so we define from A and X:

1

i :aA;nv
T = X (100)
¢, =abC,.

Thus Eq. (37) may be written as:

ZCE SRS SN SD BTl

=0 m=

(101)

FJ'(t) are time-dependent components in the LAB frame. They will
be used to derive the correlation functions and the spectral density
function defined in Eq. (71b).

Finally the general form of the Hamiltonian in the LAB frame
becomes:

A 4(LABE) = ¢ ™ (LAB,t)T[" (LAB)

Z DY [Q(f)]FE",(AAF)} T (LAB).
=0 m=-1 m'=—I|

(102)

We now apply the general procedure we have just developed to
two specific interactions of interest for relaxation: chemical shield-
ing and dipolar coupling.

3.1.2. The chemical shift Hamiltonian

In the presence of a strong static field the electrons around
the nucleus generate a localized induced magnetic field.
Although this induced field is very small when compared to
the static field, it depends on the orientation of the molecular
orbitals with respect to the static field. The dependence of this
interaction upon the orientation of the molecule in space and
therefore in the static field makes the chemical shift interaction
an important relaxation mechanism. The induced magnetic field
can be written as;

Bina = —0' - Bo, (103)
where ¢' is the chemical shift tensor (index i refers to a particular
spin) and By is the applied magnetic field. The energy corresponding
to this induced field is:

Ebg = — (¢ Blioa = 10" - Bo. (104)

When the quantum mechanical equivalent (yh.#) of the mag-
netic moment vector u is used while summing over all spins, we
obtain:

N N -
=Y His=h> ys'-ad" By,
i=1 i=1

where N is the number of spins and .7 is transposed as in Eq. (81).
From Eq. (104) it is clear that, as the external magnetic field is in-
creased, the interaction energy increases. The direction of the in-
duced magnetic field is not always colinear with the external
magnetic field. Eq. (105) can be written in matrix form as:

(105)

Ox Oy Ox B,
Hcs = hy'B, [f;f'ypﬂz] O Oy Oyl |B, (106)
Ox Ozy Oz Bz
that is,
His = hviBoZ Z{ 7'p)(pla’|q)(glex}
= hy‘BOZ Z(quf;,Bw (107)

where p and q sum over Cartesian axes, &, is the unit vector in the
field direction, and B, is the projection of é, along the g-axis (in all
cases we reserve "’ to denote operators except when denoting unit
vectors, e.g. én).

o is a spatial tensor and we can form a spin tensor, X from the
dyadic products of the spin angular momentum vector and the sta-
tic field vector By:

<y ?c']u> = (v|Bu1.5u). (108)
We can now write ./*/?cs as:
s=hyBy > d\ X, =Cd o X!, (109)

p.g=xy.z

with CL; = hy'B,. The chemical shift tensor is a rank-2 tensor with 9
components and may be represented by a 3 x 3 matrix.

O-;cx o-;cy Oy,
o= O-J’/X O-/yy 0y,
On Oy Oy
100] [0y ] [ S %%
= 0-;50 01 0]+ 7‘1;0/ 0 a;’z + SS/X SS/J’ 5;’2
0 0 1 —al, —a;,z 0 Shy s;y s,
(110)

The three tensors on the right-hand side of Eq. (110) are g, 0,
and &, with ranks 0, 1 and 2, respectively (the primes on the com-
ponent symbols denote that we have defined this tensor in an arbi-
trary frame, and distinguish these matrix component values from
those in the principal axis frame, which we will write without
primes).

For most interactions of interest, the rank-1 component of ¢ is
not necessarily zero unless symmetry makes a,, = ag,. Under par-
ticular circumstances, the contribution of the antisymmetric part
of the chemical shift tensor to longitudinal relaxation has been pre-
dicted to be non-negligible (up to about 10%) [43]. A detailed treat-
ment of this effect has been described in the literature [43,44]. We
will however neglect this component in the present analysis. Un-
der this approximation ¢ is diagonal in the principal axis frame:
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Oxx 0 0 1 00 Sxx 0 0

o(PAF)=| 0 0, 0 |=0%|0 1 0|+|0 s, 0],
0 0 o 00 1 0 0 s

(111)

where s, = 0, — Oiso and Gigo = 1 (Oxx + Gy + 02).
We can define two parameters here: the chemical shift anisot-
ropy parameter, Ag, and an asymmetry parameter, #:

1 3
Ao =0, fj(o‘xx +0yy) = 552
n:w. (112)
Sz

Using these new parameters o(PAF) can be rewritten as:

. 100]  [~31-m 0 0
0(PAF)=0i,|0 1 0 +§A0' 0 -11+n) 0
0 01 0 0 1

(113)

We can now write the chemical shift tensor in the spherical

coordinates in an arbitrary frame (including the rank-1
components):
1 -
0% = —( — |Tr{6},
° <¢§) o)
0% =— <L> (Oyy — Op)
1= V2 xy yx)s
1 .
ol = - <§> (O — O £1(02 — 0y2),
1 ;
09 = (—=)[30, — Tr{6}],
¢~ (Jg )30~ Tr(o]
1
= ¢< > [0k + 0 £1(0y; + 0)],
2 _ (1 _ ; 114
2" = \3 (O — Oyy £1(Txy + Oyx)]. (114)

Neglecting the antisymmetric components of &, i.e. setting
09 = 07! = 0 we have in the principal axis frame:

09(PAF) = —V30is,

02 (PAF) = \/2/3Aa0,

o5' (PAF) = 0,

052 (PAF) = %Ao 7. (115)
For an axially symmetric chemical shift tensor, # =0,
05! (PAF) = 0,and 052(PAF) = 0. This is the case treated when

calculating relaxation rates in Section 6.
We now expand X into its irreducible spherical components
using Eq. (94):

XJ(AAF) = — (\%) (B« + B,.7, + B,.7,),
X°(AAF) = (\%) (B, S — B, ),
X;'(AAF) = G) [Be.s; — B,.sx +i(By.s, — B,.9))),

1
XO(AAF) = (%) 3B,.4; — (ByJx + B,.9, + B..73)),

1 .
X:'(AAF) = ¥ <§> [B.5x + By.s, £ i(B..7y + By.7,)],

X280 = 5

5 (116)

) By — By.sy +i(By.Sy + Bosy)).

We can transform X into the laboratory frame. This simplifies
the expression of X" since we have chosen the direction of the
external magnetic field as the +z-axis, thus é,(LAB) = é,(LAB) =0
and é,(LAB) = 1:

X3(LAB) =~ (5 )=
XI(LAB) =0,

1
X;'(LAB) = — jfi,

XO(LAB) = \/g/z,

X;'(LAB) = :F%Ji,
X5%(LAB) = 0. (117)

The chemical shift tensor can be expressed in an arbitrary axis
frame (AAF) by rotating each component using a Wigner matrix:

o (AAF) = ZDmm, ™ (PAF), (118)
where Q = (0, ¢,7) are the Euler angles for the rotation from the PAF
to the AAF.

Now the chemical shift Hamiltonian can be expressed in terms
of irreducible spherical tensors in the LAB frame:

A =CooX= C’ZZ "X
=0 m=

We can substitute Eq. (117), (118) and (110) into Eq. (119). We
should keep in mind that we are neglecting the rank-1 component:

(119)

2
Hig=C(a)X)g+C Z (=1)™(@"),"(X")y = Hiso + H csn-
m=-2

(120)

}?Iso, the isotropic component of the chemical shift tensor, is
rotationally invariant. Thus #s is time-independent and does
not have any contribution to relaxation. It is usually added to the
Zeeman Hamiltonian and constitutes a part of 3/?0. %CSA represents
the chemical shift anisotropy.

To generalize the final expression of the chemical shift Hamilto-
nian, we will relate (¢/)]" and (X')]' to new tensors F/" and TJ",

respectively; given by:

5 ot

m e -
F'= 6y (121a)
" = -2X]". (121b)
Defining a chemical anisotropy interaction constant,
E3h = — /8hy'Bys,, we can write the chemical shift anisotropy
Hamiltonian for the ith spin in the LAB frame as
2
H esa(LAB,L, 1) = & N~ (—1)"F, ™ (LAB,t, i) T} (LAB, ). (122)
=2

3.1.3. The dipolar Hamiltonian B B
The classical interaction energy between two dipoles, j; and g,
located at two points in space linked by the vector r, is given by

(see Appendix B):
- (- F))
rs ’

where u, is the permeability of free space (not to be confused with
the magnetic dipole moment). Summing over all spin pairs and

b =12 (123)

Ei _&(ﬁi‘ﬁj_-g(ﬁi‘
3
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replacing u with its quantum mechanical equivalent, yh 7, the dipo-
lar Hamiltonian can be written as:

%Do—bzz%% {7 A =37 &) ey}

i i j

(124)

&; = L and é is dyadic; & = &;e}; so that (u[é|v) = e.e,. Eq. (124) can
be written as:

2
— yvih P
Al :—’rg {,ﬁ ‘D.ﬁ},

i

(125)

where Disa3 x 3 matrix (dipolar tensor; note that elsewhere in the
article, the symbol D is reserved for the diffusion tensor), the ele-
ments of which are given by:
(ulD|2) = 3,y — 3el el (126)

where (u, v = {x,y,z}). Now the Hamiltonian defined in Eq. (124)
can be expanded into combinations of spatial and spin components:

N hZ Dxx ny sz fjx
?DD:Z‘—% Z h 7;’ (7.7, 7] | Dw Dy Dyl |7
ij:(j>0) ij Dy Dzy D,, JJZ

(127)

We can define X/ as the dyadic product of the two spin angular
momentum vectors:

(VXilu) = (09197 |u) (128)
then:
e Lo N Vithz axes .
— 1 1
H oo = g Z N > D) (X7 ), (129)
ij;(>1) ij u,v
— Iu N e ~
_ 7o U pii ij
Hop =42 > dDieX, (130)

)

V2
where, C;; = ¥ 7
y ar r]?j

In the principal axis frame (PAF) the z-axis of the Cartesian
coordinate system is colinear with the vector joining the two di-
poles. We can derive the dipolar matrix from Eq. (126) as

1 0
D(PAF) = |0 0 (131)
0

o = O

-2

The dipolar tensor is traceless so there is no rank-0 component. This
means that, when averaged over all spatial orientations, the dipolar
interaction does not change the energy levels of the system. There is
no rank-1 component because the dipolar tensor is symmetric.

The ideality of this formulation of the dipolar tensor breaks
down when the system is nonlinear (more than two spins). Nonlin-
ear systems require the use of multiple coordinate systems where
the dipolar tensor, DY, of each pair is diagonal.

Using an internal (i.e. molecule-fixed) coordinate frame simpli-
fies the representations since only two Euler angles, ¢ and 6, are
necessary. The third angle, 7, is arbitrary; an obvious choice is
7 = 0 since the z axes can be aligned with the dipolar PAF.

Before performing any rotations we should represent the rank-2
components (i.e. the only non-zero components) of the dipolar ten-
sor in terms of irreducible spherical tensors:

3D,, — Tr{D}]
p2(pAR) = BP=—TrDI _ g
2( ) \/6
D;'(PAF) = % [Dy; + Dy 4 i(Dy, + D,y)] = 0
D% (PAF) = 1 [Dy + Dyy £ i(Dyy + Dyy)] = 0. (132)

2

From the irreducible spherical components of the dipolar tensor
expressed in its principal axis frame, we can write D in any coordi-
nate system by using Wigner rotations, i.e. with the set Euler an-

gles Q = (¢,0,0)
DJ"(AAF) = ijm, Q)D" (PAF), (133)
D3 (AAF) = fﬁm )D; = —V675,4(Q), (134)
with

ar \* .
50(6.0.9) = (5757) 7O, (135)

where Y}"(0, ¢) are the well known spherical harmonics (see Appen-
dix D). Thus

—\769%*,0(9)—\76(\/?>Y2 ,/zgnyz (136)

We can also express the spin tensor, X, in terms of irreducible

D} (AAF) =

spherical tensors from the Cartesian components, X! — .# .7 "and
1 . ; y 1 . .
X3(AAF) = — 3 X3 + X, +X] = =3[ 7).

XJ(AAF) = 2[xv X"]—E[ﬂ I, =PI,

XE1(AAF) = % {xv — XU+ X% — X1 }

1 j g1 Jj g1 gl gl Jj g

=5 {JZJX — A il — g ]}

1 N . ;
Xo(AAF) = = (3% — [X) + X5, + XL }

1 o o o

=575 WS- AS L+ AA)

X2 (AAF) = :F%{x;’{z + XU, + X! +x'f} %[Jifji + g
X322 (AAF) = %{x;fx =X +iX) + X0} = ,]z A (137)

No rotations of the spin tensors are required since they have al-
ready been expressed in an arbitrary axis frame (AAF).

We now have expressions for the dipolar and spin tensors in an
arbitrary axes system. We can express the Hamiltonian in an AAF
in terms of irreducible spherical tensors:

H B, (AAF) = CJ,D U(AAF)@X”(AAF)
Y Z " (AAR)(X')]' (AP, (138)
=0 m=

which can be simplified since only rank-2 components of D are
nonzero:
2

Cly S (—1)™(2"),"™ (AAF)(X")5 (AAF).

m=-2

A b (AAF) = (139)

We now write explicitly ?%D
2y (0, ¢) and defining (T%)} =

(AAF) in tensorial form remem-

bering that 2 = — —2(x¥)m,
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The dipolar Hamiltonian becomes
%gD(AAF ) = Ci[j)D

2 e
x §Z<DM{ Ay, (0¢>}{;<T0?}

m=-2

(140)

5
Finally we can write the dipolar Hamiltonian for one spin pair in

the laboratory frame:

with the dipolar interaction constant & = CJ, \/ﬁ.

73 (LAB ) = & i(—l)m(Y) (LAB.0)(T"); (LAB),

m=—2

(141)

where the spherical harmonics (Y?)J'(LAB,t) are derived from Wig-
ner rotation matrices:

. 2 . P
(YNF(LABL) = Y 7 w[Q(D)](Y)5 (AAF).

m=-2

(142)

Thus we have defined two of the key terms that constitute
#(t) in Eq. (37), i.e. # ,(t). These two components, namely the
CSA component and the dipolar component, are defined by Eq.
(122) and by Eqgs. (141 and 142), respectively. Thus defining both
of these Hamiltonians in the LAB frame, we can now proceed to
consider molecular rotational diffusion in this frame. This rota-
tional diffusion is what gives rise to the stochastic fluctuations that
lead to the time dependence of 7#(t) in Eq. (37).

4. Rotational diffusion of rigid molecules in randomly-ordered
or isotropic solvents

In the following three parts of this article, we assume knowl-
edge of rotational diffusion theory. Detailed derivations are pro-
vided in Appendix E.

The simplest diffusive orienting potential is the zero-potential
U(Q) = 0; that is, free diffusion. This is the case for molecular rota-
tional diffusion in an isotropic solvent. Note that while we assume
the solvent ordering to be isotropic in this section, this does not im-
ply that molecular tumbling is isotropic. As shown below, the nat-
ure of molecular rotational diffusion is a function of the geometry
of the diffuser.

4.1. The diffusion equation and the rotational diffusion operator (#)

Imagine a ‘rigid’ molecule tumbling freely in solution. Let Q rep-
resent the set of time-dependent Euler angles (6, ¢,7) that relate
the laboratory frame (LAB) to the principal axis frame (PAF) of
the molecular rotational diffusion tensor (i.e. molecule-fixed
frame) at a given instant.

2(Q, t) denotes the probability of finding the molecule in orienta-
tion Q at some time t. The conditional probability 2(Q, t|€) is the
probability of finding the molecule in orientation Q at time t, given
that it was in orientation €, at a time arbitrarily defined as t = 0.

The time-evolution of 2(Q,t|Q) is given by the Fokker-Planck
diffusion equation (see Appendix E),

0P(Q,t|Q0)
ot n

where Z is the rotational diffusion operator. For free diffusion (i.e.
zero ordering potential), # is given by

Z gPD;zng’

P.a=Xy.z

—RP(Q,t|Q) = R, (143)

R =% = (144)

where /Qp and ?iq are the p and q components of the dimensionless

classical angular momentum (infinitesimal rotation) operator 2,

respectively, and D;q is the p,q component of the rotational diffu-
sion tensor, p,q = {X,y,z} in an arbitrary reference frame (see

Appendix E). Both % and .7 are used to denote the angular momen-

tum but Z is the representation of angular momentum in real

space whereas # is in spin space. For a rigid molecule, D;q i
time-independent.

4.2. Solving the diffusion equation

To solve the diffusion equation [13], it is most convenient to
work in orientational space, i.e. that spanned by the Euler angles
(¢, 0,7), rather than in Cartesian space. This enables transforma-
tions between reference frames in a simple fashion. Eq. (E61) pro-
vides the general solution to the rotational diffusion equation,
which is reproduced for convenience below:

7= W,(Q)P.,(Qe " (145)
"

The ¥,(Q) are eigenfunctions of the rotational diffusion operator 2,
with corresponding eigenvalues b,. The specific forms of these
eigenfunctions and eigenvalues are dictated by %, which is in turn
determined by the ordering potential U(Q). In the remainder of this
part of the article, we determine ¥,(Q) and b, for the case of the dif-
fusion operator Z, resulting from an ordering potential U(Q) =0
(free diffusion).

4.2.1. Determination of ¥,(Q) and b,

4.2.1.1. Expansion of ¥,(Q) in the basis of Wigner rotation func-
tions. We begin by identifying an acceptable basis in which to
complete our calculations. The normalized Wigner rotation func-
tions 7', ,,(Q), introduced earlier in the context of rotations be-
tween PAF, LAB and AAF, form a complete orthonormal set and,
as such, provide a convenient basis for expanding ¥,(Q). We

may expand the ¥,(Q) in the basis of the normalized Wigner rota-

tion functions /25l 7! (Q) as
21 +
Q) =) ‘,mm,\/ D (146)

Lm,m’

where the ¢!, . are the projections of ¥,(£2) onto each of the basis
functions /25l 9! (Q),0 <1<

lar and therefore a constant. This is essentially the multipole expan-
sion, used in electromagnetic theory [45].

Substitution of Eq. (146) into (145) yields the general solution
for 2 in the Wigner basis in the most explicit form:

2s+1 by
Z vrr 87'52 rr’(‘Q):|e b‘t'

s.rr

oo, |m|,|m |<landl=0is asca-

20+1 H
P , gl
Z|:’mm/ vmm \[ “@ma mm

v

=3I

v o lmm srr

1+ 125+ 1)y € Phi () (@)™ (147)

4.2.1.2. Matrix expression of Z in the basis of Wigner rotation func-
tions. Methods of calculation. We will follow the usual approach
to obtain the eigenvalues b, by solving the characteristic equation
|% — b,1| = 0, where 1 is the identity matrix. To do this, we must
first express the operator # as a matrix in the basis of the Wigner
rotation functions.
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We compute each ‘matrix element’ of Z is this basis as:

%;le){,w,}, = <l’,k’,f|%\l,j,k>,
where |1, k,j) = /2] + 1/8m2%,,(Q). Note that to prevent notational
crowdedness due to use of ‘double primes’, the indexes have been
changed to {l,j, k} from {I,m,m’}. To evaluate explicitly the various
terms J/)mk“ we must fully understand the operation of % on each
of the basis kets | I, k,j). This, in turn, depends on our choice of ref-
erence frame (because tensor elements D’pq are frame-dependent).
Working in the principal axis frame of the molecular rotational dif-
fusion tensor is a logical choice, especially because it simplifies the

expression for Z considerably. In the PAF represented in a Cartesian

(148)

basis, D is diagonal with principal components Dy, Dy, and D,,. Note
that we have removed the primes for the D,, (compare to Eq. (144))
to denote that these are the tensor elements in the diffusion tensor
PAF. Note that we have also used D,, where p,q = {x,y,z} to
represent the components of the dipolar tensor, e.g. in Eq. (127).

Since D is diagonal, all elements D, . , are zero, and using the mol-
ecule-fixed Cartesian coordinates, Eq. (144) reduces to:

A (PAF) = Dy 72 + Dy, 2 + D, 2. (149)

Through fairly straightforward algebraic manipulation, Eq.
(149) can be converted into a form that is better suited for an ori-
entational frame:
~ —~ 1~ — —
% (PAF) :A$2+EB($3+$%)+Cf§, (150)
where 2 is the (dimensionless) total angular momentum operator
squared, # . are the ladder operators,

L= P24 P2 J.=PxiD, (151)

and the parameters A, B, and C are given by

A= % (D + Dyy)y

B—1(Dw-D,) C=D,-A 2
5 P = Py 2z

The angular momentum operators act on the normalized Wig-
ner Functions, | ,k,j), in a manner analogous to their operation
on the well-known spherical harmonics, namely

P2 kj) =11+ DILk,j) L2l k.j) = KIL k. j),

ZoLkj) = /(AT k)(1+tk+1) |Lk+1,j),

P2kj) = JUF Rk + D5k 1)1 £k+2) [Lk+2,j).
(153)

The Planck’s constant h does not appear in Eq. (153) because 2 is
dimensionless.

Note that | I, k,j) corresponds to a rotation from the laboratory
frame (LAB) to the molecular frame in which the diffusion tensor
(D) is diagonal (PAF). While k is the eigenvalue of the 2, operator
in the diffusion tensor PAF (see Eq. (153)), j is the eigenvalue of 2,
in the laboratory frame (i.e. the projection of the component of
angular momentum parallel to the z-axis in the LAB frame). Like-
wise, the ladder operators have no interaction with j, since we
are working in the PAF of the diffusion tensor. While we have omit-
ted frame designation in the notation of our angular momentum
operators, an understanding of these properties will become
increasingly important in following parts of this article.

We are now in a position to evaluate Eq. (148), using
% = #(PAF) as expressed in Eq. (150). Defining the constants
Gr=VIFkh(I+k+ 1) (IFk—-1)(I+k+2) we can write

A k,j) = AL2|L, k. j) +%B(§i\l,k7j) + 22, k,j>) +C22|1,k.j)

1 . )
= Al(l+ 1)L k.j) + iB(,m,k +2,J) + &l k= 2,j))
+ CK* |1, k. j)

+ 5B KT LK +2,j) + & (1K Lk = 2,j)

(1K J |2k, j) = AL+ 1) (UK 1L K.j)
1
+ ORI K Lk, ).

(154)

We omit the (PAF) notation henceforth for tidiness, but it is under-
stood that we continue to work exclusively in the PAF of the rota-
tional diffusion tensor.

Employing the orthogonality relation in Eq. (154), we have:

(K J| 2Lk, j) = Al(l+ 1)0r16ki0y;

1_,. i
+t5 B(&i0110y k429 + Ewdridn x-29;)

NI (155)

i
and finally,

Ry = UK 121K,

. 1., .
= 0y19; {bk’k (Al(l +1) + Ckz) + jB(Cﬁék’.mz + o ra) |
(156)

where the superscript (2) implies that we are in the PAF of the dif-
fusion tensor.

Eq. (156) looks rather complicated. However, matters may be
simplified considerably upon closer inspection. It is evident that
Wigner basis functions with values of I' > | do not interact in Eq.
(156). In addition, the qu-(!)) are defined such that for each value
of I, the values of j and k range from —I to [ in integer steps; that
isjork=-l,-1+1,-1+2...1-1,L It is convenient, then, to di-
vide the I'l, K'k,j'j-space into I-subspaces, in which we consider only
‘Z-mixing’ of basis functions with one value of I at a time. This fol-
lows from the fact that two tensors of different rank (i.e. different
values of I) do not interact. For the purposes of finding the eigen-
values, then, we may rewrite Eq. (156) in the following way,
implicitly assuming [' = I

20 _ D{ e (Al(L+ 1) + O }

P (157)
far +3B(Eidk k2 + Cudir2)

It is also clear that % (PAF) does not mix Wigner basis func-
tions with values of j and j # j (this is expected physically, since
2'?)(PAF) is in the PAF of the molecular rotational diffusion tensor,
while j is related to the z-component of angular momentum in the
laboratory frame). Moreover, even for j' = j, the matrix elements in
Eq. (157) have no dependence on j-values whatsoever (whereas
they do depend on Lk, and k'). We can then further simplify Eq.
(157), writing it as

. 1 .
A" = 00 (Al + 1) + O ) + 3 B(Eider + Epdusca). (158)

Explicit matrix expressions
Using Eq. (158) we may finally write explicit matrix representa-

tions for #)". Beginning with rank [ = 1, we have
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A" = 502+ CK) + ;B<g] Wiea + Eidiia ) (159)
where
=y +R(kE+k 160,
Ge=y/1+ 02 -k0E k)
and we will compute the matrix 2/ as follows:
k=-1 k=1 k=0
29 AU AN
20 = | 20V 27 2RV | K =1 (161)
AP g0 gam | K =0,
Evaluating Eq. (161) is straightforward and yields:
2A+C B 0
AW = B 2A+C O (162)
0 0 2A
By identical methods, for rank [ = 2
%;(jk = 5kk<6A + Ckz) + ;B(Cz KOk k2 + 2400 k- 2) (163)
where
=1/ - KB +h1 - k)@E+k)
S = \/(2 +k)3-k)(1+k)(4-k). (164)

The columns of the matrix representation of #2“? are reordered as

follows:
k=-1; k=1, k=-2; k=0, k=2
72Q2) Q) (2)@2)
R AL e e Q—ll 2 K =_1
AP D@ L S ,
2O _ 1,-1 1,1 12 kK =1
K =-2
: : : k=0
; : : K =2
2 D) D)2 D2
%(zj 1 : %5,1)( Do %;2( )
(165)

This order yields a block-diagonal matrix form for 2“®, which
simplifies further calculations significantly. A straightforward but
cumbersome derivation yields

6A+C 3B 0 0 0
3B 6A+C 0 0 0

A = 0 0 6A+4C V6B 0 (166)
0 0 V6B  6A V6B
0 0 0 V6B 6A +4C

4.2.1.3. Solving the characteristic equation. Armed with explicit ma-
trix representations, we now seek to determine the eigenvalues
b and eigenfunctions ¥ in the Wigner basis. We do this
through the usual approach of solving the characteristic equation,
det(#2 90 — p1) =0

Rank-1: Let us begin with the simpler case of the rank-1 tensor.
The characteristic equation is:

(24-b") {(2A+C—b5,”)2 —BZ} -0. (167)

Solving Eq. (167) for b'" yields
bl =2A+ C+B, 2A. (168)

Entering these results in the eigenvalue Eq. (E52), we can solve for
the eigenvectors (eigenfunctions):

A0 ph) — pD D

24+¢c B0 [ e (169)
B 24+C 0 ||l |=bf
0 0 2A C(‘()) Cio

As before, the ¢, are the components of the eigenfunctions in
the Wigner-function basis. Eq. (169) amounts to (yet another)
system of lmear equations, which may be solved easily for the
components c . The full set of normalized (in the sense that

'I’E”T‘I’J =y, Where superscript T implies the transpose) eigen-
vectors and eigenvalues for the rank [ =1 tensor is given by
-1 1 0
v = A1 | = Al ] w =0
0 0 1 (170)
b =2A+C-B b)=2A+C+B b{’ =24
1 (1)
b =Dy, +D,, b =Dyw+D, b} =Dy +Dy,.

In the last line of Eq. (170), we have explicitly computed the
eigenvalues b, in terms of the principal components of the diffu-
sion tensor (see Eq. (152)).

Rank-2: The approach for the rank-2 tensor is identical to that
for the rank-1 tensor, although the computations are necessarily
somewhat more complicated. The characteristic equation is
det (@

(2)(2) _ biZ)ﬂ5> =0, (171)

where 15 is the 5 x 5 identity matrix.

Since #“)® is block-diagonal, (#”® — b?15) is block diagonal
as well, and the determinant of the whole matrix is simply the
product of the determinants of the individual blocks. It can be
shown easily that Eq. (171) evaluates to

[2(3A +20) - bi,”] [GA +3B+C— bE,”] (6A—3B+C—bh,)

y {4<9A2 +6AC 38~ b?'(34 1 0)) + (bi,”)z} , (172)

which when solved for b yields

b —6A+4C, 6A+C =3B, 2(3A+Ci\/3BZ+C2>. (173)

As above, we proceed by writing the eigenvalue equation

b(2) @

y

AP PR _ p2 @) _

v v v

, (174)

which amounts to a system of linear equations that we must
solve to determine the components of the eigenvectors. The solu-
tions for three of the five eigenvector/eigenvalue pairs are fairly
straightforward:
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0 -1 1
1
vi= il | wr=il o | w=lo
0 0
1 0 0

b"°) =6A+4C b?)=6A+C-3B  b?)=6A+C+3B

b?) =D +Dyy +4D,, b} =Dy +4Dy, +D,, b’} =4Dy+ Dy, +D,.

(175)
The other two cases are not so simple, especially when the nor-
malization requirement is imposed. Let us first examine the v = 2
case, without imposing any normalization:
0
0
=] 1
+
—v6(c-v/38+C)
— 3
1

b% :2<3A+C+\/3BZ+C2>,

where we have used y (rather than ¥) to emphasize that the vector
is not normalized. When expressed in terms of the principal compo-
nents of the diffusion tensor, b ; becomes rather unwieldy. A bit of
algebraic manipulation reveals that the expression simplifies signif-
icantly by defining the constants

(176)

1
r=3 (D + Dyy + Dz,)
. (177)
B= \/§ (DxxDyy + DyyD,; + D;.Dyx)
whence
bfz):6(<x+\/oc2—/}2>. (178)

We now wish to find an analogous simplifying parameteriza-

tion for 'I/(f Normalization of |// yields
W g
G
0
0
V3B

(179)

21/ 3B2+C2—C\/3B2+C?
vZ(V3B1C-C)
21/ 3B2+C2—C\/3B24+C*
V3B

21/ 3B2+C2—C\/3B%+C?

Note that Z = X in Eq. (179). We search for a convenient change

of variables by taking the ratio X/Y and arbitrarily equating it with

the tangent of a new parameter ., (which we are about to deter-

mine). We add the factor of 1/v/2 with some foresight of the final

result, as it makes the expression for our parameter y,, somewhat
simpler:

N < X © o

X_1sing,  [X=gpsing, (180)
Y 2cosy,, Y=cosy,,.

The manipulations to determine j_, are straightforward:

X V3B V3B

== = tany,, =

Y ﬁ(\/332+c2 —c) V3B i -C

A, = arctan \/§B

\/ V3B - C
(DXX — DYJ’)
= arctan . (181)
V3B + c2 — D, +1 (D + Dyy)
3(Dw—D

¥, = arctan v3( w) . (182)

61/02 — f* — 2D, + Dy + Dy,

Using Eqs. (180) and (182), we can express ‘I’fz) in a manageable
form as

0 0
0 0
v =| T | =\5| sinze (183)
COS %2 V2cosy.,
e SLY

By identical methods to those above, the last rank 2 eigenvector,
?’52), and its corresponding eigenvalue are found to be

0
] 0
P2 — \/; siny, |, (184)
V2 cos y,
sin y,
where
Dy —D
o = arctan V3(Ds — Dy)
Dy +Dyy — 64/02 — > — 2D, (185)

by = 6(057 o2 — /32>

4.2.2. Symmetrical molecules

In the preceding sections, we have assumed no molecular sym-
metry. For an axially symmetric (i.e. a rod, disk, or ellipsoid) or
spherically symmetric molecule, the method for solving the master
equation is identical to the one followed above, but the calcula-
tions are less laborious. In the case of axial symmetry, we take
the z-axis of the molecular frame to be along the symmetry axis
of the molecule. Due to the symmetry, the diffusion is isotropic
in the x and y directions of the diffusion tensor PAF. Accordingly
we may write Dy = Dy, =D, and D,, = D, and therefore

A=D, B=0 C=D,-D,. (186)

For spherically symmetric molecules, which diffuse completely iso-
tropically, Dyx = Dy, = D,; = D, and

A=D, B=C=0. (187)

Eqgs.(186)and (187) may be directly substituted into the characteristic
equations to derive the eigenvalues and corresponding eigenvectors.

4.2.2.1. For axially symmetric systems

Rank-1:
2 in Eq. (162) is diagonal, and since B = 0, the eigenvalues
are:

{2A+C, 2A+C, 2A}={D,+D,, D;+D,, 2D,}.

Rank-2:
Again in this case %!
eigenvalues:

)2 in Eq. (171) is diagonal, with
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{6A+C, 6A+C,
= {5DL +DH 5DL +DH7 ZDL +4DH7

6A + 4C, 6A, 6A-+4C}
6D,, 2D, +4D,}.

4.2.2.2. For isotropic systems.

A=D=D,, B=C=0.

29V is a scalar with a diffusion constant 2D (i.e. 290 = 2D1),
2@ is also a scalar with a diffusion constant 6D.

4.2.3. Equilibrium probability distribution

Calculation of the equilibrium probability distribution is
straightforward. Direct substitution of U(Q) =0 into Eq. (E63)
yields

Pey(2) = exp[-U(Q)/keT] 1
T Texp[-U(Q)/ksTIdQ — [dQ
1 1 (188)
e (‘Q) = n 7 2n Q2
T T do J7 singdg [;Tdy 87
Alternatively, considering Eq. (E64),
lim P(Q, £[Q0) = Peq(€2). (189)

It is evident from inspection of Eq. (147) that in the long time limit,
all terms in the summations vanish (because they contain the
decaying exponential e~>t), except for the single term arising from
the trivial rank | = 0, b, = 0 case. This term is equal to unity, and
one therefore arrives at the identical solution Peq(Q) = 1/87? as ob-
tained through consideration of Eq. (E63).

5. Rotational diffusion of rigid molecules in ordered solvents:
stationary uniaxial potential

We now turn our attention to diffusion within a non-zero order-
ing potential U(Q) [46,47]. For simplicity, we consider an axially-
symmetric or uniaxial potential, the unique axis of which is re-
ferred to as the director. At present, we assume this frame is fixed
relative to the laboratory. We do not treat the more difficult case in
which the director is not stationary in the laboratory frame (this
phenomenon is commonly referred to as director fluctuation). The
current description corresponds physically to the diffusion of rigid
bodies in a liquid crystal solvent which is aligned at a constant an-
gle with the static magnetic field.

The simplest form for a uniaxial potential, known as the Maier-
Saupe potential [48], is given by

a=98) U0 _ @301
o kBT n kBT B 2 ’

which may also be written in terms of the second order Legendre
polynomial (see Appendix D.2) as —c?P,(cos ¢). The constant ¢ indi-
cates the strength of the potential and ¢ is the angle between the
molecular axis and the director.

The solution to this problem is similar to that of the preceding
isotropic case. However, several additional steps are necessary as a
result of the non-zero ordering potential.

—¢ 7 (Q) = (190)

5.1. The diffusion equation and the rotational diffusion operators %
and I’

Recall Eq. (143):

07 -

5 = —42. (191)

In the presence of the ordering potential, the form of % is now (see
Eqs. (E50) and (E65)):

% =0(1+¢) {’jﬁ + §*<§*%>OJ

+o(l—¢) {@;@y(@y%) }

op

+on [@3 +2, (@Zﬂz/) ] , (192)
op

where the (...),, notation is taken to mean that the terms *..." in-

side parentheses are evaluated and then treated as a single opera-

tor, and

Q = Dxx;Dyy7
_ D« —Dyy

gzm" (193)
_ 2D,

=Dy,

For the sake of convenience, we define a dimensionless diffusion
operator I' as

~ 1=
Ir==2. 194
2 (194)
We can now write the diffusion equation as
102 -
——=-T2. 195

5.2. Solving the diffusion equation

5.2.1. General solution

Writing the diffusion equation as Eq. (195) simplifies calcula-
tions somewhat, but in essence, the general solution is the same
as that for the case of diffusion in an isotropic liquid. The normal-
ized eigenfunctions of I' are obviously the same as those of 2,
while the eigenvalues of T' are those of # divided by o. Thus, the
solution to the diffusion equation is given by a modified form of
Eq. (145):

P = W, (Q) ¥, (Qe ", (196)
0

where ¥, (Q) are eigenfunctions of T (and 2), with corresponding
eigenvalues a, = b, /9.

5.2.2. Finding specific ¥;(Q) and a,

We proceed again by writing a matrix expression for the diffu-
sion operator I in the basis of Wigner rotation functions, and solv-
ing the characteristic equation |I'—a,1|=0. To simplify
calculations, we consider an axially symmetric diffuser such that
Dy =Dy, =D, and D,, = D (see Section 4.2.2.1) and work in the
principal axis frame of diffusion tensor.

52.2.1. The T'aga and Vf\xm operators. As explained in detail in
Appendix E.4.2, it is convenient to perform calculations using a
symmetrized operator, I' (where the ‘tilde’ ~ above the operator
denotes that it has been symmetrized). From Eq. (E95), we have

S 2 1/ 1/~ — 1 /—~ N2
Faxial = Viggal + 5 (VAxial’”> 2 <$+%> (3—”1/) - ;171<$z”1/> ;

Vi = 22+ L2+ 072
(197)

The axially-symmetric nabla-squared operator (see Eq. (E92))
may be written more conveniently by recognizing that
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Viia = Lo+ L2+ 22+ (- 122

2 2 2 (198)
Visia = 2+ -1)27,

Employing the bra-ket notation |l k,j) = /2] + 1/8n29 (Q) used
previously, we may therefore write (see Eq. (153)):

Vaiall:koj) = [0+ 1)+ 01 = D] Lk j). (199)

5.2.2.2. Evaluation of individual T Axial operator terms. In order to
compute the matrix elements of I axiat, We first need to evaluate
each term in parentheses in Eq. (197). In our bra-ket notation,
U =29 (Q) = —c2|2,0,0), and thus

V2 = —C*[2(3) +0]]2,0,0) = —6¢*|2,0,0)
LU =—c*/2(3)2,1,0) = —vV6c?(2,1,0)
P =—-*\/2(3)[2,-1,0) = —V6¢*|2,-1,0) (200
2, = 0.
Eq. (197) can be written more explicitly
FAxml = vA)ual ;( 6c2|2,0,0))
—Z(—Véc2|2,1,0>) (—\/6c2|2,—1,0>> (201)

= 3
I pxial = vaxial +3¢%2,0,0) — EC“\Z, 1,0)®2,-1,0),

we may rewrite the vector product |2,1,0) ®|2,—1,0) using the
formula

[hi+h]

> [Clh, b, Lmy,m)y,m)

I=[l—b|
xC(h, by, l;my, my,

|, my,my) @ |, my,my) =

m)[lm',m)],  (202)

where C(l;, L, ;m}, m,,m") and C(ly, L, l;m;, m,, m) are Clebsch-Gor-
dan coefficients [49-51], and the sum includes all coefficients for
which m} +m) =m’, m; + my = m,|m’| <I' and [m| < |

Therefore, we have

4
2,1,0)®[2,-1,0) = Y €(2,2,1;1,~1,0)C(2,2,1;0,0,0)|1,0,0).
1=0

(203)

The non-zero coefficients C(2,2,1;0,0,0) with [ values in the range
of the limits of the summation are

)=++/1/5
C(2,2,2;0,0,0) = —/2/7
) = ++/18/35,

and thus all terms in the summation for which I = {1, 3} vanish.
Values of C(2,2,1;1,-1,0) for which I = {0, 2, 4} are

€(2,2,0;0,0,0) =
(204)

C(2,2,4;0,0,0

C(2,2,0;1,-1,0) = —/1/5

C(2,2,2;1,-1,0) = +/1/14 (205)
C(2,2,4;1,-1,0) = +/8/35

Evaluation of Eq. (203) then yields

2,1,0)®2,-1,0) = —%|o,0,o> =2,0 0>+35 14,0,0).  (206)

The diffusion operator may then be written as

foial = vaxial +3C2‘27070>

3 3 18
40 — il _ =
+C <]O|O,O,O>+l4|2,0,0> 35 |4,0,0)>. (207)
Combining like terms:
3 c? 3¢t 18¢*
T vial = Viyia + 3¢ (1 +ﬁ>|2,o, 0) +5410.0,0) ~ —5-14,0,0).
(208)

5.2.2.3. Matrix expression of T axial i the basis of Wigner rotation
functions. We are now in a position to calculate the individual ma-

trix elements of T aga:

F/(\igall/!.k’kj/j = <l/>lclvj/{FAXialuvlcvj)‘

(209)

Note that because of the vector products associated with
T axial|l k,j), unlike the diffusion operator for isotropic solvents,

the diffusion operator T axial does mix Wigner basis functions of dif-
ferent rank (i.e. with I'  I). This would complicate the current prob-
lem considerably as compared to the case in which there is no
ordering potential, and each [-subspace may be considered inde-
pendently. However, the absence of any raising or lowering opera-
tors in the final form of the axially symmetric rotational diffusion
operator prevents mixing in either k or j, as we shall demonstrate
shortly. Notice that this is not true for the most general case of fully
asymmetric diffusion (see Eq. (E94)), which does contain both rais-
ing and lowering operators. We do not consider the most general
case of the diffusion of a diffuser of arbitrary shape in an arbitrary
ordering potential. The reason for using this simplified model is jus-
tified due to two reasons: (1) the asymmetry in the rotational diffu-
sion tensor is generally small and ignored in most NMR studies of
biomolecules, (2) the liquid crystalline media used for most studies
of biomolecules to measure residual dipolar couplings (RDCs) con-
sist of nematic liquid crystals with a unique director [52-54]. Thus,
the case considered here is likely to be the most general in the con-
text of biological NMR.

It is easiest to handle the calculations by considering each of the
four diffusion operator terms (which we will denote as

{f;\e;g‘ll ...f;gig}“}) separately, and adding the results together at

the end. We see directly from Eq. (199) that for the first term,

TEm" = Vs
(1K FITEm k) = 10+ 1) + K200 = 1)] ondiedy

=3c%(1+¢?/14)|2,0,0), the ‘matrix ele-

(210)

For the next term, F}f;{: 2
ment’ is:

3¢? (1

where the vector product |2,0,0) ® |I,k,j) may be written as

2
+1C—4> (IK.7]12.0,0)® |, k.j). (211)

241
12,0,0) @ |, k,j) = Z C(2,I,L;0,k,k)C(2,1,L;0,7,))IL, k,j). (212)
L=2—1]
The element is then
(Lk, ]|F§m“}2|l,k’,j/> = (l + 14>
2+l
X Z C(27le;Ork'ﬂk)C(2717L;07j7.j)($l/l.(sk/k5j,j
L=2-1|
(213)
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For the next term, '3 = 30,0, 0), the ‘matrix element’ is

3¢t .
and recognizing that |0,0,0) = 1, this element is simply
(KT FEmLk) =2 suouy (215)

Finally, for the fourth term, [rema _ 1814, 0,0), the element is

Axial —
1SC Be (1K 114,0.0)@ Lk j), (216)
and we may write the vector product |4,0,0) ® |I,k,j) as
441
14,0,0) @ |Lk,j) = > C(4,1,L;0,k k)C(4,1,L;0,j, )L kj). (217)
L=[4—|
Thus,
y m . 18C4
(I,K.j |F§§ml4\l k.j) = -3
4+1

x Y C(4,1,L;0,k k)C(4,1,L;0,],7)81 6105

=41
(218)

Now that we have evaluated the contribution of each term sep-
arately, we may write the full matrix expression for the diffusion
operator as

g
Axlal,,k ki

,Z (1K ;’\r;@;;;"u k.j)

2+1
[l(1+1>+k (;771)]5,,, +3¢ (1+%)L ‘2‘ ”C(2<l,L;0,I<,I<)C(2,l,L;O,j,j)zS,rL

=00y
v 350, — 7L % 1 C(4,1,L;0,k,k)C(4,1,L;0,j.j)0;,

(219)

This is the equivalent of Eq. (158) for an axially symmetric dif-
fuser in a uniaxial potential. However, the explicit evaluation of

matrix elements of I'\”) is far more complex. Thus, obtaining
the eigenvectors and eigenvalues is best done numerically, rather
than analytically as in the simpler case of "%\ii)al in Section 4.

6. Calculation of relaxation rates
6.1. Relaxation rates in Liouville basis

Following the derivation of the Redfield equation of relaxation
(Section 2), the presentation of the Hamiltonian operators of inter-
actions contributing to relaxation (Section 3), and the treatment of
rotational diffusion (Sections 4 and 5), the calculation of relaxation
rates in the Liouville basis is now straightforward.

Although the calculation of the Redfield equation of relaxa-
tion (Section 2.3) was useful for the introduction of concepts,
it will now be more convenient to derive relaxation rates while
employing the product operator formalism (Section 2.1.3). Our
starting point will be Eq. (62) and the expressions of the Hamil-
tonian operators of interactions contributing to relaxation found
in Section 3.

We use Eq. (101) to describe each contribution to # (t). Assum-
ing as before that the time dependence lies in spatial operators, we
have

ZZ OT,

=0 m=

(220)

where F| (t) is a function of spatial variables, T"" is a tensor spin

operator. They satisfy the properties:
T,"=(T")", F"=(F")" (221)

It is possible to expand T}" in a basis of the commutation super-
operator #, (a superoperator is an operator that acts in a linear
vector space formed by a set of operators; see for example refer-
ence [24]), where

T;’LZT'"P Zc

[%o,fp]:%()%p:wp%p.

(222)

(223)

The w, are the eigenfrequencies of the Hamiltonian #o. Eq.
(223) implies:
exp(— lﬁot)%p exp(lj’ot) = exp(—iw, )%p (224)
When Eq. (224) is applied in the interaction frame one obtains

T — exp{i# ot} T]" exp{—i# ot}

=" exp{iA ot} T{P exp{—i# ot} = > T[” exp{impt}. (225)
p p
T;™ = exp{i# ot} T; ™ exp{—i# ot}
=Y exp{i# ot} T;™ exp{—iA ot}
p
(226)

= T,™ exp{—iwpt}.
p

Using Eqs. (220), (225) and (226) combined with Eq. (62) one
obtains (where we have written p,,(T.) as p,, for notational
simplicity):

/:’_7_5 23373 expli( wp/+cop)t}[rmp [T'"P ()—f)eqH

=0 mm’ pp

“f R

where we assume, for the sake of clarity, that only one interaction
contributes to relaxation. More complete expressions are provided
below. The imaginary parts of Eq. (227), which are also called dy-
namic frequency shift (see Section 2.3.3), are the second-order fre-

quency shifts of resonance lines that are included in #,.
The real part of Eq. (227) can be written as:

- VZZ Z Z exp{i(—awy + wp)t}

=0 mm’ pp

HF (t+ 1) exp{—iw,t}dr, (227)

o0(0) _

x [T7 [T, () = Pea] |17 (). (228)
where the power spectral density function j" (w)) is:
iM(@,) = Re / F T (OF™ (¢ — 1) exp{ i, 7} dt,

s (229)
iNwp) = Re/ FI'(6)F,™(t + 7) exp{—iwpT} dT.
Note that:

m 1
(@) = (1) (@) = 5 (=) (@). (230)

Thus we only need to calculate the spectral density function for
m =0 [55].
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The time dependence of F](t) for a rigid molecule comes only
from the transformation from an arbitrary molecular basis frame
to the laboratory frame, which is to say from molecular tumbling.
Making use of Egs. (96) and (100), we can write:

Ji'(p)

=Re / :C 21 Zf/h’" (Q()E (AAR)Z*,, . (Q(t+7))F]" (AAF) exp(—iw,T)dT.
(231)

We now use Eq. (C12) to link the correlation functions to the
orientation probability of the molecule:

00 1 1 ;
o =Re [ 737 ST

O m'=— m"=-1
<[ @A) ¢ + 7)) 2 20) 2. 710)
o Jo,

x F" (AAF)F]" (AAF) exp(—iw,1)dt,
(232)
where the orientations Q, Q, have been defined in Eqgs. (C7)-(C9).

The probability 2(Q, 7|Q) is expressed in Eq. (147) and the
equilibrium probability can be found in Eq. (188):

(_l)m—m/
M (wp) Re/ IS o

v.om'.m" srr uvv

X /(25 +1)(2u+ 1)c}

u —byT p—iwpT
v‘r‘r’cv.u.v’e ey

x / G (@8 Q)dQ [ D (20) T (20) A
Q Q
x F" (AAF)F" (AAF)dt.
(233)

We now use the orthogonality relationship for Wigner func-
tions Eq. (D87):

™ (@) Re/ Y S S

v.om'.m" srr uvv

Vs EDuT)
2s+1)(2u+1 cs

2s+Dur) oG
X 6 _m,p0mr 5l,u(5—m.r(5m’.r/5l,sF[m,(AAF)FImN (AAF) dr,

(by+iwp)T
e v
v,

(234)

so that

™ () = Re / )Y €€ e ORI (AAR)EY (AAF)dT.
vom,

(235)

Performing the Fourier transform, we finally obtain:

)y ’ b
1 m' m
Ji' (p) ZZ, 21+1 € mmCh_mm I (AAF)F] (AAF)Z—(bU) pvrt

(236)

It has been assumed that the random processes FJ'(t) and F]" (t)
are statistically independent unless m’ = —m, which results in a
vanishing ensemble average in Eq. (227). Thus we can use a single
index c{"), for the coefficients. The b and c!’,, have been defined in
Section 4.2.1.3.

Terms in Eq. (228) for which w, — wy # 0 are nonsecular (with
few unusual exceptions) and they do not affect the long-term
behavior of p(t). When none of the eigenfrequencies are degener-
ate, the terms in Eq. (228) are secular and nonzero only if p = p’,
which yields:

bn

6

) ézizm:

1=

0
Z[T;mp [T;””B (t) - peqH( D"j" (wp).
P

X

(237)

Now, the isotropic [ = 0 terms do not contribute to relaxation;
the [ = 1 are non-zero for CSA (see Section 3.1.2) but we have cho-
sen to neglect them. The only relevant terms are the [ = 2 terms in
Eq. (237). Thus we have:

=X X[ [

Using Eq. (230), replacing j, (w) by J(w,), and dropping the subscript
in J,(w,) since | = 2 is assumed:

B Seryn

This equation can be transformed back into the laboratory frame to
obtain a modified version of the Liouville-von Neuman equation
taking into account relaxation.

t) = pea | (=15 (). (238)

P15, () = e |1y, (239)

W) it p(t) - R(PO) ~ pea). (240)
The relaxation superoperator E is given by
R= 762 Z Z [(T5%)] 1) (p). (241)

The stochastic Hamiltonian will contribute to relaxation under
two conditions as can be seen in Eq. (240): (1) the double commu-
tator cannot be zero and (2) the spectral density function must
have a significant value at the characteristic frequencies ), of
the spin system.

Using the basis of product operators (see Eq. (28)), we have the
matrix form of the master equation in Liouville space:

8bar£t) = >~ {~iwby(t) = Rs,s. [b(t) - 1] }, (242)
with the frequency w:
@rs = % (243)

The relaxation rate Rp, 5, between the operators %, and % can
be calculated as:

(244)

>
] T77Tm7'JS
o -y (2 5;};3 I

When basis operators are normalized, Tr{#?} = Tr{#?}. When
r =s, the diagonal element R, 5, is called the auto-relaxation rate
of %, whereas for r # s, the off diagonal element Rg, 5, is called
the cross-relaxation rate between %, and %;.

Eq. (240) has been derived assuming that all terms appear from
the same interaction y. However, as seen from Eq. (101) interfer-
ence terms may occur when for two different sets of interactions
pand p' (with pu# ') take place. In such a case Eq. (240) trans-
forms to:
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dp(t)

p 1
a2

[T (T390, PO) = g | (C1TT (@),
p

N

(245)

when u# ,u’,]””’(wp) is the cross-correlation spectral density
function.

Following similar steps as before we have the equivalent of Eq.
(244)

/ 1
REts =5 &
e = g onw 2

) (= 1) (p).

(246)

R is the cross-correlated cross-relaxation rate between %, and
%;. Thus transforming back into the LAB frame (see Eq. (240)), in
general we have:

dA . . = ~
PO oo, piey - DR (PO~ pes).

(247)

where the matrix elements R{;ff,;s of R# are given by Eq. (246).

6.2. Relaxation for a two-spin system

For a two-spin system (.7,.#) the 16-dimensional Liouville
space leads to a 256-element relaxation superoperator. If the nor-

malized identity basis vector, 11, were to be ignored the resultant

15 x 15 matrix representation of R is symmetric, i.e. Rs, 5, = Rp, 5,
While we neglect the identity basis vector in the current discus-
sion, its inclusion makes the relaxation superoperator singular,
but is required to predict the correct steady state. Several publica-
tions have discussed the so-called homogeneous superoperator
that includes the identity [26-29]. Thus, one needs to calculate
15 diagonal and 105 off-diagonal elements. However, many off-
diagonal terms are nonsecular, e.g. double-quantum terms cross-

relax with double-quantum terms only, so that R is block-diago-
nal: the so-called Redfield kite [24]. For the non-zero terms we
present explicit calculations for three representative terms.

Remembering the definitions of the spin tensors derived in Sec-
tion 3, we can calculate the double commutators [T;™, [T5F,.7,]].
These terms T,” can be obtained from Eq. (137), realizing
0 = —2XI,

Looking at Table 1, it is clear why each term T5' was split into
constituent T37. The T} term, for example, contains the so-called
longitudinal two-spin order component, .#,%,, which has an eigen-
value of zero under the static Hamiltonian 7#,, and also the zero-
quantum ‘flip-flop’ terms T9' and (T9')* that have eigenvalues
i(w, — 605).

Similarly, we can obtain T;” for the CSA interaction by using Eq.
(117). These are shown in Table 2.

Table 1
Tensor operators for the spin part of the dipole-dipole interaction.
m p "™ T =T wp
0 0 (:/—g) ISz (Q—g) 52, 0
0 1 %@A‘/* Jigf, 7 Dy — g
1 0 ISP -9, Wy
1 1 I S —I_; Wy
2 0 — IS —J_ P Wy + Wy

Table 2
Tensor operators for the spin part of the chemical shift anisotropy (CSA).
m p " ;™ = TP
4 4 4.4
0 0 -4 4,
1 0 S -4
2 0 - -

Having written the T,” for the major interactions, we are now
ready to derive the matrix elements of the relaxation superopera-
tor R. Other excellent treatises [2] are_available which provide
expressions for most matrix elements of R. This review is designed
to provide a general method to calculate relaxation rates, so we
will only present three representative examples.

6.2.1. Auto-correlated relaxation

We first present the derivation of R, ,,, referred to as the spin-
spin (or transverse) relaxation rate, R,, which is an auto-relaxation
rate. In Eq. (246):

(248)

6.2.1.1. DD contribution. For the auto-correlated contribution, i.e.
w= ' =DD in Eq. (246), we first consider the relevant commuta-
tion operations term-by-term.

(T3 (T3 )pps 7+ (249)
Term 1: T
00 [700 (4 g 8 1 2
[Tz , [T2 ,ﬁ“ = <%> 252 5290 9] =5 x 3 S =57+
(250)

Taking the trace of the right-hand side and dividing by the nor-
malization term, with (T*)™ = T~ we have for term 1:
2Tr{s_ 7.} 2
e = 251
3Tr{sr_s,} 3 (251)
Thus, multiplying by the corresponding J(w,), we have the contri-
bution of term 1:

2 2
(-1)"5 J(0) = 5J(0). (252)
3 3
Now consider the other terms of Table 1 one-by-one:
T,", [Tg‘ ,J+H =0 Term2—0,
9", [T;m,Jﬁ :%J+ Term 3 — (=1)° J(w; — ws) xé:%}(wl —ws),

— 2 Terma— (~1)! (o) x —%>:21<ws>7
1

:—%J+ Term5 — (=1)" J(ws) x —§> :%J(ws),

0 Term6—0,

0 Term8 — 0,

el e el

N

L

=

—

—

N o=

=

A
s s e AR R
e e e = =

=7, Term9— (1) (o +ws) x 1=](w;+ws).
(253)

Summing all terms, we find the contribution of dipole-dipole auto-
correlation to the transverse relaxation rate to be:
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2100) + gl — 5) + 2] @3) + (@) +J(@ + )
= 2 40) +J(r — ) + () + (1) + (1 + 03)).

(254)

The dipole-dipole contribution to R;, ;, becomes:

Iy

R, =5 oo g (4(0) + (01— @5) + 6(05) + 3J(0) + 6] + 05),

(255)
where for constant rys
, 379,vch
a (Z_%) \[Z /Irv?j ’ (256)

and thus, we have:

2
R =g (4) ”’ﬁ;h (41(0) + J(r — 3) + 6] () + 3] ()

+ 6J(wr + ws)).
(257)

6.2.1.2. CSA contribution. Next we consider the CSA of spin .# to be
finite and axially symmetric. Using Table 2 we obtain:
Term 1: TY

§J+. (258)

1)° J(0) x § = J(0).
[T;OO, [Tgo.,ﬁﬂ =0 Term2—0,

[Tgov [TgO,J+H :g[fh [fz=f+]] =

Leading to a contribution of (-

[Tgo, [TQOO,JJ ] =27, Term3 — (—1)°J(w) x2=2J(w;).  (259)
Thus the total contribution from the CSA becomes:
CSA
Ry, = fcsm 3 (41( )+ 3(cwr)). (260)
with
AO—I’VIBO
, 261
GCSAI \/6 ( )
thus we have:
AG?y2B;
REH = 220 41(0) + 3)(en)). (262)
Finally, we have:
R =RY, +R (263)
thus
1o\ 2 73y3h° ~
Rs = 5 (H0) 5 WO) +J(@1 - ) + 6](5) + ()

Aa, y,ZBZ

+6J(wr + ws)) + —5—(4](0) + 3J(wy)).

(264)

Following the derivation of an auto-correlated auto-relaxation
rate, we now provide an example of auto-correlated cross-relaxa-
tion, choosing the operators %, and %, to be &, and .7, respec-
tively. We evaluate each term in Eq. (246) and find that non-zero
commutators arise from the term T5' and its complex conjugate,
thus

e i) -

—

g2 = 72) (265)

and
(& [T;f”, {Tgl,/z]b (-1 (266)
(S 2) 6 (7] 6
The term, Ty, contributes (—1)° J(w — ws) x (—3) =

—J(w; — ws). A similar contribution comes from the correspond-
ing complex conjugate making the total contribution —1J(w;—
ws). The only other contributions come from terms corresponding
to row 5 of Table 1. This contribution is 2J(w; + ws). Thus we
have:

1 o 1
Rs,1, =5 §D3( =J(or — ws) + 6/ (o + ws)) (267)
which for constant intermolecular distance rys:
2
Bo\?vivsh” o
Rs.i = 5 (42) (o= 09 + o+ o). (268)

Rs,,, is related to the so-called steady-state NOE in the following
way:

NOE = 1 4 Roeke Us
i Vi

(269)

6.2.2. Cross-correlated relaxation

Finally, we derive the cross-correlated cross-relaxation rate, due
to the interference between the dipolar interactions of the .# and %
spins (#=DD) and CSA (i = CSA) interactions of the .# spin
[56,57]. From the secular approximation, the only non-zero contri-
bution to I';, 51,5, corresponds to the contributions of row 4 in Table
1 and row 2 in Table 2:

[(Tgm)Dm {(T;])csm ij’(/ZH =—[I Y2, [I,25.:9]]

IS 2.5,.F)
= 2929 9| =45%9,= 7,
(270)
Taking the trace with .#, and multiplying by the corresponding
spectral density term, we obtain a contribution of (—1)'J** (wy).
Considering the three other combinations of (T;'%)pp, (T3 )esas
(T35 and (T;')e, we have a total contribution of —4J(w;). In

the limit of isotropic overall tumbling and an axially symmetric
CSA tensor for .#, Ry, 51, is given by

1 /el !
Ry, a1s, = —ECVDDC csad) (o)
_ (Ko P1ysh (3cos?0 — 1)
o (47T> 1‘135 BoAay 2 J(@n), 271)
where
, 3cos%0 — 1
1 o) = CX =D e, 272)

and 6 is the angle between the .#.# dipolar vector and the unique
axis of the CSA tensor of spin .#.

7. Conclusions

We have provided a unified, self-consistent description of the
microscopic (quantum) interactions that influence dynamics in
spin-space for an ensemble of spin-1/2 particles, as well as
the real-space effects of the macroscopic (classical) global rota-
tional diffusion determined both by molecular shape and the
nature of the solvent, and finally the combined effects of the
two on the spin-relaxation rates measured by NMR spectrosco-
pists. The measurement of amide '>N spin-lattice (R;), spin-spin
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(Ry) and the steady-state NOE with the attached hydrogen has
become routine for practitioners of biomolecular NMR spectros-
copy, both expert as well as non-expert [58-60]. These rates
can be used to determine the underlying spectral density func-
tions and to interpret them using the Lipari-Szabo formalism
(the so-called ‘model-free’ approach) that relies on the separa-
tion of the global rotational diffusion and local dynamics on
single [61,62] or multiple timescales [63,64]. This separation is
formally possible only for isotropic overall diffusion in an iso-
tropic medium and is thus not covered here. Good approxima-
tions can be used for auto-correlated relaxation in the case of
weakly anisotropic diffusion. All spectral density functions in
this review have been derived assuming that the spin-system
under consideration is rigidly attached to the biomolecule and
that the only motion results from the overall rotational diffu-
sion. The reader is referred to the original papers [61,62] or
pedagogical treatises [2,65] on the topic for further details. It
is to be mentioned here that alternative approaches that do
not require such a separation have also been proposed, but
have not yet been widely applied [66,67].

In this review, we have chosen not to derive detailed expres-
sions for all possible matrix elements of the 16-component relax-
ation superoperator for a simple two spin-1/2 system, providing
three illustrative calculations instead. The general expressions pro-
vided here should allow the reader to calculate the relaxation rates
for the remaining elements. In recent years, a wide array of sophis-
ticated pulse sequences have been developed to measure a large
number of these matrix elements, i.e. auto-relaxation and cross-
relaxation rates of different sets of coherences. The reader is re-
ferred to the excellent book by Cavanagh et al. [2] and the refer-
ences therein for examples.

Most results presented here are available, in varying levels of
detail, throughout dispersed literature. It is hoped that our detailed
derivations and presentation in a consistent formalism will be
helpful for a more general understanding of the origins, approxi-
mations, and theoretical underpinnings of spin-relaxation in iso-
tropic and anisotropic media.
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Appendix A. Miscellaneous theorems

We present here some theorems that will be of use in deriving
some of the expressions provided in the text.

A.1. Operator exponentials

The exponential et of an operator </ can be written as a Tay-
lor series,

okt _ Z (kt)" .ot ‘ (AT)

!
vt n

The time derivative is given by

O e S K'tTgm
A D (A2)
so that:

gtek A _ e sz/ekm ekt o . (A3)

If |2) is the eigenstate and E is the eigenvalue of an operator, i.e.
=E|%) (A4)
by using Eq. (A1) one can show:

N

eik; |/L> _ eiI<E|/~L>. (AS)

A.2. Properties of the commutator

A.2.1. Unitary operator-commutator product
Let % be an unitary operator (#'% = %% =1), and ./ and #
denote arbitrary operators. Then we may write:

O/[% %M* [Jzz Jut W/JM*] (AB)

A.2.2. ‘Distributivity’ of the commutator
We employ the following in Section A.5. For any three operators
of, B, and €

7+ 2,8 = 7,8+ |3,9]. (A7)

A.3. Interaction representation for #(t)

The Hamiltonian for relaxation interactions is given by the fol-
lowing in the interaction representation:

71 (t) = ei!{’ot%] (t)eflv.y/'gf —_ et Z %“(t)efif/gf
— Zei%/gt;%? lﬁfgt Z /( (AS)
m

A.4. Change of representation: similarity and unitary transformations

A.4.1. Change of basis by a linear transformation

Let ¥ denote a linear, invertible (non-singular, i.e. det() # 0)
operation that transforms one basis set 8 = {|iy)} spanning an n-
dimensional Hilbert space H into another set of n vectors
¢ = {Ji¢)} that are also in H. For all the vectors in each basis set,
we have

Flin) = lic) 5" lis) = lis). (A9)
Any vector \U) in H may be written in the basis 8 as an expan-
sion |v) = 31 12} 9 i) where 1/ ) is the ith component of |) in the

basis B (analogous expressions hold for any other basis). Since & is
linear, |w) = &1|v) is an element of H, and it follows that

ZW |15
n n

Zw Flig) =Y wiPlic,)

i=1
where the last expression has the same form as the expansion of a
vector in a basis set. Thus, since |») is an arbitrary vector, € forms a
basis for H, and any linear, invertible transformation may be re-
garded simply as a change of basis.
Given that 8 and € form bases for H, we may write

w) =7 v) =
(A10)
v) = F|w) =

1)®) = F®)3)©

) = 7)), At

where .#® denotes the matrix representation of 7 in the basis
%, and |)® and |#)'® denote the column-vector representations
(i.e. the list of components) of the vector |») in bases B and
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G, respectively. We thus have clear rules for how vector compo-
nents transform under a change of basis.

A.4.2. Transformation of operators under a change of basis: similarity
transformations

We now determine how operator elements transform under a
change of basis. Consider the general operator (basis-independent)
equation |u) = fiw). where </ is an arbitrary operator. We may
write in each of the two bases 8 and €

)@ = o/ ®)|)® (A12)
and

W) = /O ©. (A13)
Using the first of Eqs. (A11), we may write Eq. (A12) as

y(%)|u>(@) — M(“‘W(%)lw(@,

u)© = F B oy®) 2B 1)(© (A1)
Comparing Eqs. (A14) and (A13), we see that

A9 = O oy ®) ¥ (A15)

and through application of analogous logic to Eq. (A13) and compar-
ison to Eq. (A12)

1

A® = 5® g p® (A16)

Egs. (A15) and (A16) are called similarity transformations, and are
mathematical formulations of a result that is intuitively obvious:
the action of an operator in a given (arbitrary) basis may be divided
into the following steps: (1) transform the vector (operand) into a
basis where the matrix representation of the operator is known,
(2) operate on the transformed vector using the matrix representa-
tion of the operator in that basis, (3) transform the vector (modified
by the operator) back into the original basis.

Similarity transformations are useful when converting matrices
into convenient forms for computation (e.g. changing to a basis in
which the matrix representation of a given operator is diagonal, as
in the the principal axis frame of the diffusion tensor). As should be
expected from a change of representation, basis-independent oper-
ator properties are constant among the various matrix representa-
tions produced through similarity transformations. Of particular
interest, similarity transformations conserve the value of the
determinant

|9 = ) o SO p®)

|5 -

/™| = |2,
(A17)

where we have employed the relation |.«/%| =| </||%|. Therefore, a
similarity transformation leaves the characteristic polynomial
unchanged

|/ © — 219 =

_® g (\B)y(%)’ = |/ ® — 1]
(A18)

and thus the eigenvalues of .«#® and .#'® are the same (though the
column eigenvectors generally are not). This feature allows us to
represent operators (or tensors) in an arbitrary interaction frame
(AAF), and then transform into other frames (PAF, LAB, etc.), while
preserving eigenvalues, norms, etc. Finally, the trace is preserved

n n
Oy _N" /0 _ B\ )
Te(/9) =Y = > (™ )ﬁ.pij,( %
i=1 ij.k=1

n n
St = St Te(), 19)
k=1

Jk=1

A.4.3. Unitary transformations: rotations

A special class of similarity transformation is the unitary trans-
formation, for which & =%, with Z'% = #%t =1 (that is,
%' = &"). We may write

lic) = W|is),
(ic | o) = (in| %' U |j) = (i | jss),

from which we see that under a unitary transformation of a basis
set, the magnitudes of the basis vectors are maintained (the i =j
cases), and the projections of each basis vector on to every other
one also remain constant (the i # j cases). Geometrically, this im-
plies that the lengths of the basis vectors and the ‘angles’ between
all of them are preserved under unitary transformations. Such
transformations therefore describe simple rotations, like the trans-
formation from the laboratory (LAB) to the principal axes frame
(PAF) of the various interaction tensors. Calculations involving the
CSA and the dipolar tensors shown in Section 3, and those involving
the diffusion tensor in Section 4 all make use of unitary
transformations.

(A20)

A.4.4. Active and passive transformations

Notice that the components of |7) in Eq. (A11) transform inver-
sely to the way the basis vectors themselves transform (compare to
Eq. (A9)). This is because, under a change of basis, the vector |2) is
in fact unchanged; it is only the coordinate system that is modified.
For example, consider the case where ¥ produces a simple rota-
tion in real, three-dimensional space: the coordinate axes are ro-
tated by some finite angle about a given axis, and the vector
components transform in the opposite sense (by an equal and
opposite angle of rotation about the same axis), so as to maintain
the correct specification of the abstract vector. Because the vector
(i.e. the physical system) itself remains unchanged, a change-of-
basis operation is classified as a passive transformation.

It is clear from this description that a mathematically-equiva-
lent description is obtained by performing an active transformation
that leaves the coordinate frame constant (i.e. leaves the basis vec-
tors unchanged), but transforms all of the vectors in the opposite
sense to that in which the basis vectors are modified in a passive
transformation. In this case, however, the operation of an arbitrary
operator </ on the basis vectors remains unchanged (because the
basis itself is unchanged), and therefore, the matrix elements of

</ are constant under an active transformation. Notice that the
designation of active versus passive transformations is referenced
to the vectors rather than the operators. Vectors are changed in ac-
tive transformations, and left untouched in passive ones. The oper-
ators are constant in active transformations, and undergo
similarity transformation in passive ones.

A.5. Density matrix evolution in the interaction frame

We now consider the transformation of a system evolving un-
der a Hamiltonian # = # o + #1(t), where #, is time-indepen-
dent, with the time evolution described by Eq. (38). Using the
unitary operators # = eiot and %' = et where #,t is time-
independent, we have

9~ Or~.~ U~ )
Zh="Agypytl = gyt Loy 2oyt 4 g
5iP = gt [P =Gp U + WL W + p

(A21)
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Using Eq. (A6), the last term is:
iu [?/(t) p] at —l[@//?i/i W/p%]
- 1[77(970 + (t)) a, ,5]
—ilawout + a0, ﬁ]

|
:1{%0’ wiu' 1(&5}
1[}%0 Lt i)} (A22)
Therefore, using Eq. (A7) we obtain
5P =17 10.5] (A23)

where the effects of the static component # have been removed.

Appendix B. Treatment of NMR interactions
B.1. Dipole-dipole interaction energy

The quantum mechanical Hamiltonian for dipolar coupling is
justified by the analogous formula for interaction energy of two
magnetic dipoles obtained through classical electromagnetic the-
ory. The relevant calculation is presented below.

B.1.1. Magnetic field due to a point dipole

Consider a magnetic dipole moment (i.e. an infinitesimal cur-
rent loop), the location of which we take to define the origin of
our coordinate system. In SI units, the magnetic vector potential
at a location described by the position vector r = ré, due to this
magnetic dipole is given by

S gixT
A= Ko BT, (B1)

where x denotes the vector cross product, u = i, is the magnetic
dipole moment, &, is a unit vector pointing along the z-axis
of a right-handed Cartesian coordinate system, and p, =4mx
107 kgms2 A% is the permeability of free space (not to be con-
fused with the magnetic dipole moment). In spherical polar coordi-
nates (r, 6, ¢)(not to be confused with Euler angles), where 6 and ¢
are the polar and azimuthal angles, respectively (following the con-
vention most often used in physics [49]).

e, =cos0 e, —sin0 ¢, (B2)
and we have
X T = [i(cos0 & —sing &) xr & (B3)

and since &, x &, =0 and &, x &, = —&;
X T =pursino é,. (B4)

The magnetic field ED produced by the magnetic dipole is given
by the curl of Ap:

ED = 6 X/KD, (BS)

where in spherical coordinates the curl of an arbitrary function V is
defined as:

1 e, 18 rsindeé,
VxV=ooold & & | (B6)
V., 1V, rsindV,

Since ;D has neither é, nor &, components (Ap, = Ap, = 0), and
sin 0
A, — o B B7
Do T An 2 (B7)
we have
e, reé, rsinde,
- L 1o o 2
D = Zsing|r @ 23
0 rsin0Ap,

My 1 |9 [usin’o 5 psin® 0 s
" 4w r2sinf |90\ T T c‘)r r !

Ho 2ucosf e, + usind e

T 4n r3 (B8)
Employing Eq. (B2) once more

B _ Mo 2pucos 0y + i(cos ey — ;) [y 3,uc059ér_E (B9)

P an r ~4m 3 r

and using the definition of the scalar dot product:

g _ Mo [Bre ]

Bo=n |~ 7 3| (B10)

or somewhat more elegantly

Bt [3nT @

Bp = in 5 5l (B11)

B.1.2. Interaction energy between two point dipoles
The potential energy, E, of a magnetic dipole placed in a mag-
netic field B is given by

E- 1B (B12)

Thus, the interaction energy, Ep,p,, between two magnetic dipoles
W1 and y, is given by

= e e 3 T2 T)
7'u1‘BD2:ﬁ B rs

Ep,p, = (B13)

which is Eq. (123).
B.2. Chemical shielding

The presence of an applied magnetic field induces an electrical
current in the electron cloud surrounding a nucleus, thereby gener-
ating an additional magnetic field. As a result, the total magnetic
field at nucleus is changed. This effect can enhance (de-shielding)
or decrease (shielding) the strength of the magnetic field at the nu-
cleus and may also change the effective orientation of the magnetic
field such that the applied and the total magnetic fields at the nu-
cleus are not colinear. The difference can be inferred by the perturba-
tion of the vector potential (A) by the electron cloud. It is also correct
to say that the external magnetic field creates a magnetic dipole mo-
ment at the nucleus, which creates a perturbed vector potential.

The shielding effect depends on the orientation of the external
field; hence it should be described by a tensor rather than a scalar
number. The orientational dependence of the chemical shielding
on the external magnetic field can be observed in solid-state
NMR [68].

For a nucleus with a magnetic moment y in an external mag-
netic field B, the energy change AE is given by [69]
AE=—1-B+-0 B, (B14)
where the first term is the direct interaction of the nucleus with the
field (the so-called Zeeman interaction) while the second term is
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Ehe electron-coupled interaction described by the shielding tensor
.

Before starting the actual description of the perturbation effects
we should note the differences between the terms “chemical shift”
and “chemical shielding”. The chemical shielding, as described
above, is an orientation-dependent tensor quantity that describes
the change in the local magnetic field (i.e. the field sensed by the
nucleus) due to the interaction of the electron cloud with the
external field, whereas the chemical shift is the change of the res-
onance frequency of a nucleus relative to a given standard [68].

The relation between chemical shift, , and chemical shielding
tensor can be expressed as:

0 =100 — 0, (B15)

where 1 is the unit rank-2 tensor, ois is the isotropic value of the
given standard and ¢ is the chemical shielding tensor.

The chemical shielding tensor is a 3 x 3 matrix with nine non-
zero components (in general). The tensor itself is asymmetric,
but the number of independent non-zero components can be re-
duced by molecular symmetry. One can define each term of the
matrix representation of o as:

O*E

Oik = _3Mf331< )

(B16)
where E is the total electronic energy of the molecule, i,k = x.y,z,
and B, are the components of the external magnetic field in the
direction k.

The energy E is determined by using second-order perturbation
theory. Excellent reviews are available on the calculation of chem-
ical shift tensor elements. We refer the reader to these reviews
without reproducing the results here [70-73].

Appendix C. Correlation functions and spectral densities
C.1. The auto-correlation function

Consider any function Q(t) that takes a random value at each
point in time, governed by the probability P(Q,t). That is, P(Q,t)
gives the probability that Q(t) will take the value Q at time t. Such
a function Q(t) can define, for example, the orientation of a body
undergoing rotational diffusion, in time.

The average value of Q(t), i.e. the average orientation, is given
by integrating over all possible orientations, €, at a given time:

Q) = / Q(t)P(Q, t)dQ. (C1)

A function f(t) = f(Q(t)) will likewise be random in time, with an
average value

- / FIQP(Q,)dQ. (2)

The averages in Egs. (C1) and (C2) may be interpreted physically in
a similar way as the average in Eq. (44); that is, as ensemble aver-
ages over an ensemble of particles undergoing independent rota-
tional diffusion. In the case of relaxation, Hamiltonians for
interactions such as the dipolar coupling and chemical shift anisot-
ropy satisfy the requirements for the function f(Q(t)): spatial func-
tions that are constant in the molecular diffusion frame are
stochastic functions in the lab frame, due to the effect of rotational
diffusion that constantly reorients the molecule with respect to the
external field.

Now, we may consider that while Q(t) is random, for short
times 7 the values Q(t) and Q(t + t) will not be completely inde-
pendent random variables, but will instead show a correlation.
Physically, this must be the case for rotational diffusion, since

the diffuser cannot instantaneously ‘jump’ from one orientation
to another that is significantly different. Defining t' =t + 1, we
can define the function P(€,t’;Q,t) as the probability that
Q(t) =Q and Q(t') = Q. We define the conditional probability
P(Q,t'|Q,t) as the probability that Q(t') = Q' given that we know
Q(t) = Q at the earlier time t. We may thus interpret P(Q',t'|Q,t)
as a probability of ‘transition’ from orientation Q to Q' over the
timet=t—t.

P(Q2,t';Q,t) depends on the probability that the diffuser is in
state Q at time t to begin with (which has a probability P(Q,t) of
occurring), and then on the probability of the transition to state
Q' over time 7 (which has probability P(Q',t'|Q,t) of occurring).
Then we may write:

P(Q.t;Q,t) = P(Q,1)P(Q, 1|2, 1). (C3)

The auto-correlation function G,(t,t'), of a random function f,(t)
with itself relative to times t and t', is defined as

Ga(t,t') = fa(O)f5 (1), (C4)
where the overbar denotes an ensemble average.

In the same vein as Eq. (C2), we may rewrite the auto-correla-
tion function as

Gal(t, t’):/ /.fa(Q)f;(Q’)P(Q’,t’;Q., t)dQdeY (C5)
and employing Eq. (C3),
Galt, ) = / / P(Q,OP(2. 2|2, Df.(Q)f: (@)dQd. (C6)

We assume rotational diffusion to be a Markovian process,
which is to say that the future state of the system depends only
on the present state, and not upon how it arrived there (i.e. the sys-
tem has no ‘memory’). This implies that the statistical properties of
Q(t) - that is, the functions P(Q, t) — are in fact independent of time
(i.e. Q(t) are stationary random functions). Furthermore, the func-
tions P(€,t'|Q2,t) and P(,t;Q,t) do not depend specifically on
the times t and t’, but rather on their difference t. Thus, it does
not matter when we start measuring the auto-correlation function;
what matters is only the period of time over which we measured it
(i.e. how long we measure it for). Simply stated, all the probability
functions are independent of the origin of time, which implies
ergodicity. As a result, we may arbitrarily set t = 0, yielding:

t=r1,

Ga(t, ') — Gq(T),

P(Q,t) — P(£),

P(Q t'|Q,t) — P(Q,T|Q),

(€7)

where Q, denotes the value of Q(t) at time t = 0. The auto-correla-
tion function is then

Ga(7) = / /fa(Qo)fJ(Q)P(Qo)P(Q,TIQo)deQo. (C8)

In the case of rotational diffusion, we assume that the system is at
equilibrium at t = 0, and denote the equilibrium probability distri-
bution function as P(€p) = Peq(£0). The auto-correlation function
can be written as [74]:

Go(T) = / | 1 0)f; (@)Pea(@0)P(2 710, 0)d 21, (C9)

C.2. The cross-correlation function

The cross-correlation of two random functions f;() and f,(Q) is
defined using the same reasoning as above for the auto-correlation,
yielding
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Gap(T) = fa(B)f (1) (C10)
and
Gap (£, ) //f Qf; (2)P(Q. 12, £)dQd. (C11)

Taking t = 0 and assuming the system to be at equilibrium initially,

Gan(7) ://fa(QO)fg(Q)Peq(-QO)P(QvT‘Qo)d-QdQ& (C12)
It may of course be considered that the auto-correlation function is
simply a special case of the cross-correlation function for which
b=a.

C.3. Properties of correlation functions
As discussed above, for ergodic processes f,(t), we may arbi-

trarily move the origin of time without affecting the value of the
correlation function. We may therefore write

Gab(7) = fa(0)f; (7) = fa(—=7)f; (0), (C13)
which is to say
Gab(T) = Giol—T). (C14)

Consider the auto-correlation function G4(7). If fo(7) is a real func-
tion, then G,(7) = G4(7) and G,(7) is thus both real and even:

Ga(T) = Ga(—=17). (C15)

For real functions f,(t) and f,(t), the correlation function is a
maximum at the origin (this is plain to see for auto-correlation:
at T = 0 a function is perfectly correlated with itself):

|Gab(T)| < Gan(0). (C16)

C.4. Operator correlation functions

The concept of correlation is not restricted to scalar functions.
We may just as easily define correlation between stochastic oper-
ators /() and <7,(t), simply replacing complex conjugate opera-
tions with the adjoint, and considering an operator and its
Hermitian conjugate in place of real and complex scalar functions:

G = (i|to(t

i i) |7t + D),

(C17)

where the various kets are basis kets. Since Hamiltonians are Her-
mitian, #, = #}, their correlation is given simply by

G = ({| Ao ) J | #b(t +D)|T).

UU

(C18)

C.5. The spectral density functions

The spectral density function J,(w) (often referred to as the
power spectrum) is defined simply as the Fourier transform of the
correlation function:

Jo(@) = [ Galtre 2 dt =y () (c19)

Thus, the auto-correlated spectral density function J,(w) is real.
Employing the Euler identity e’ = cos 0 + isin 0, we may write,

Jap(@ / Gap(T)[cOS (—m7) +isin (—w7T)]dT
- / Gay(7)[cOS (0T) — isin (w7)]dx. (C20)

Since for a real, ergodic function f,(t), the auto-correlation G,(7) is
an even function, it follows that:

Jo(w) = 2/ Ga(T) cos (wT)dT (C21)
0

and in this case J,(w) is also a real and even function:

Ji(®) =J,(—w). In addition, we note without proof that the auto-

correlated spectral density function of an ergodic process is non-

negative for all w.

Eq. (C21) facilitates the definition of two other auto-correlated
spectral density functions of ergodic processes which appear often
in the main text, j,(w) and K,(w). Rewriting Eq. (C21) and employ-
ing the Euler identity in the opposite sense as in Eq. (C20), we have

%ja(w) = /% Gq(T)[cos (0T) —isin (wT) +isin (wt)]dT
JO

= /x Ga(T)e %dt + i/m Gq(7) sin (w1)dT (C22)
0 0
and defining
_ /§o Ga(T)e  dr,
. (€23)
= / Gq(7) sin (w1)drT,
0
we have
o) = 3Jul) ~ iKyf). (©4)

Thus the real and imaginary parts of j, (), respectively, are given by
. 1

Re{jo ()} = 5Ja(),

Im{j,(w)} = —Kq(w).

The correlation function is written in terms of the spectral density

Jap(@) as

(C25)

1 > :
Gal®) =5 [ J(@)e"do (C26)
For 7 = 0, Eq. (C26) becomes
A (c27)
Likewise,
Gu0) =Ll = 5 [ Il (C28)

In the event that f,(t) represents a component of a fluctuating mag-
netic field (e.g. one of the various mechanisms leading to relaxa-
tion), the quantity in Eq. (C28) represents an expansion in the
frequency spectrum of the power dissipated by the process.

C.6. Correlation times

A correlation time is defined somewhat loosely as a time interval
7. such that G(z.) is large. Correlation does not exist for signifi-
cantly longer intervals: |t| > 7., and G(7) decays rapidly for times
longer than t.. Various definitions for 7. are appropriate depending
on the interaction in question. For example, one option is to use the
total area under the G(t) curve as a metric of the length of the
effective correlation time:

rc:/o IG(7)[dx.

Alternatively, one might choose a differential definition of the effec-
tive 7. that measures the ‘decay’ slope of G(7):

d
¢

(C29)

-1

Te = (C30)

=0
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Several factors affect the correlation time of the rotation of a gi-
ven rigid molecule, including molecular size, molecular shape, sol-
vent viscosity, and temperature. In water, 7. is typically on the
order of hundreds of picoseconds for small molecules, and on the
order of nanoseconds for macromolecules [2].

Appendix D. Fundamental theory of angular momentum and
rotations

In this appendix, we present the fundamental results of angular
momentum theory. Much of this material is covered in standard
quantum mechanics texts [19,50,51], and Brink and Satchler [75],
Zare [76], and Rose [77] have written excellent books devoted to
the topic of angular momentum and rotations (we follow argu-
ments from both of these latter two books below). In addition,
Silver [78] provides a thorough yet accessible treatment of irreduc-
ible tensor methods.

The physical and mathematical tools developed in this appen-
dix are central to this article, and must be fully understood in order
to appreciate the details of both relaxation theory and rotational
diffusion theory.

D.1. Orbital angular momentum operators

D.1.1. Operator definitions B
Classically, a particle of mass m travelling with velocity  at po-
sition r has linear momentum p = m v and angular momentum

L=rxp, (D1)

where x denotes the vector cross product. 2, the quantum
mechanical counterpart of L in Eq. (D1), is obtained by replacing
p with the operator p =1V where V is the gradient ‘del’ operator
V = &é+5e + e (and &,eéy, and e, are unit vectors in a right-
handed Cartesian coordinate system). The form of p may be justified
according to its role as the generator of infinitesimal translation
(see Appendix D.3.1). The p operator is clearly Hermitian. For nota-
tional convenience, we shall proceed using so-called Planck’s units
in which h = 1, as in the main text. The operator components of the
quantum mechanical angular momentum vector operator & are
then

— [, 0 0
L= 71<kafl%), (D2)

where {j k,I} ={x,y,z} and cyclic permutations; that is,
k. 1} = {{x,y,2},{y,2,x},{z,x,y}}. In spherical polar coordinates
(r,0,¢), where 0 and ¢ are the polar and azimuthal angles,
respectively,

Py = i(sin ¢%+cot()cos ¢£>,

)
Py =i —cos¢2+cot05in¢£ (D3)
T 00 a¢)’
— .0
fZ:—l%.

By writing their matrix representations in a suitable basis of
eigenfunctions (see below), it can be verified that these operators
are Hermitian (they thus have strictly real eigenvalues correspond-
ing to quantum mechanical observables, namely, the projection of
total angular momentum onto each axis). These operators corre-
spond to the orbital angular momentum of a particle, due to the
motion of its center of mass about an external point.

The angular momentum operators obey commutation relations
of the form

2.2 -2, (D4)

where, again, {j, k, [} ={ x,y,z} and cyclic permutations.

These relationships may be easily verified through the applica-
tion of the various operators to test functions (i.e. confirming that
(%), Li)f = @12\ f — @ Z:f = 2 f for any function f). The com-
mutation relation (D4) is also frequently expressed in the literature
using the equivalent equation, [#}, %] = iy <), where € is
known as the Levi-Civita symbol or asymmetric unit (pseudo)ten-
sor, and is defined by €, = €y = €5y = 1, €y = €y = €z = —1,
and all other €jy = 0. The commutation relation is also occasionally

given as # x Z =i 2, which is indeed quite elegant, if less imme-
diately informative than the other expressions.
The total angular momentum squared operator .#2 is defined as

D=9 L =92+ 72+ 72, (D5)
which can be expressed in spherical polar coordinates as

— 1 & 1 a/. 0

p2 _ _ — — -

o= Lin2 0 9¢* "sin0 90 (sm 039)} ' (bo)
The operator obeys the commutation relations

[@{,@x] = [3?2,3@] - [@2,3@] -0, (D7)

which, like Eq. (D4), may be verified through application of the
operators to arbitrary test functions. Since the orientation of the
coordinate system may be chosen arbitrarily, Eq. (D7) shows that

%2 commutes with the projection of the orbital angular momen-
tum on any Cartesian axis.

D.1.2. Eigenfunctions and eigenvalues

Two quantum mechanical variables are ‘compatible’ - that is,
they may be measured/observed simultaneously and without
uncertainty - if states exist that have well-defined eigenvalues
for the operators corresponding to both variables. That is, two vari-
ables are simultaneously observable if there is a complete, simulta-
neous set of eigenfunctions of both corresponding operators (any
arbitrary state vector may be expanded in such a basis). The exis-
tence of such eigenfunctions implies that the operators corre-
sponding to such variables commute. This is readily seen by
considering two operators <7 and % with simultaneous eigenfunc-
tions |a, b). For all eigenfunctions |a, b):

/|a,b) = ala,b),
@‘a,b> = b‘a$b>’
+/ Bla,b) = bs/|a,b) = bala, b), b9

%</\|a,b) = a%|a,b) = baja, b),
= B~ Bd =4, B =0.

Because the various ; do not commute with each other, while

each commutes with 22, we may know only the total angular
momentum (squared) and one of the components with simulta-

neous certainty. In other words, the eigenfunctions of #2 are simul-

taneous eigenfunctions of one of the :?j, the identity of which
depends on how we choose our coordinate system. By convention,

we take this to be Z,, though we could have chosen another axis just
as easily. Thus we may choose normalized states |Z;, m) such that

$2|;L[7 m) =/

Lol m) =mli,m),

i, m), (D9)
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so that /; is proportional to the square of the total angular momen-
tum, and m is proportional to the projection of the total angular
momentum onto the laboratory z-axis.

Consider the operator &} + ¥2 = ¢* — #2, which is diagonal
in the {|/;,,m)} basis since all |, m) are eigenfunction of both #2
and 2,

(2% = 22) 12,m) = (5 = m?) 2, m). (D10)
The quantity 4, — m? is clearly greater than or equal to zero since
each term is the square of a real scalar, and the total angular
momentum is larger in magnitude than its projection onto the z-
axis. We then have /; > m?, implying that the values of m for a gi-
ven /; are bounded between some m = my,,x and m = my,;,. Let us
denote these extreme values of m more succinctly, as [ and I':

I=Mpax <M< Mpin =1 (D11)
In the following sections, we will define the nature of these

eigenfunctions and eigenvalues more precisely.

D.1.3. Definition of ladder operators
We define two operators ¥, and % _

D= +i2, (D12)
or in spherical polar coordinates,
— . 3] 0
— pTid i : -
Y.=e <iae+lcot08¢>, (D13)

which are non-Hermitian (in fact, 2, = #.), and therefore do not
have real eigenvalues that correspond to observables. That is to say,
there is no simple correspondence between these operators and any
physical quantity or measurement. They are nevertheless quite use-
ful in examining the nature of wave functions.

It is readily obtained from Eqgs. (D4) and (D7) that

[.7.] =0 [2.7.]=47.. .
7.7 | =27, -

Let us examine the second of the commutation relations (D14)
by application to an eigenfunction |4, m):

[Tz?z, fsz?i] m) =+ 2. |7, m)
=L, Pi|m)— L Ly, m)

=2, P |,m)—mP .|\, m), (D15)
P, 7 |i,m) = (m?ii + ?ji>\;,l,m>,
?Z(f@iul,m) = (m+ 1)(@i\).,,m>).
According to Eq. (D9), this implies that
Po\ym) = ig|d,m+1), (D16)

where the constants 4, and /4_ have yet to be determined. Thus, Kz
and #_, aptly referred to as the raising and lowering operators,
respectively (or ladder operators as a pair), operate on the eigen-
states |/, m) so as to alter m by +1 while preserving the value of
/1, producing ‘new’ states that are also eigenstates of #2? and 2,.
Because the value of m is strictly bounded between [ and I' (see
Eq. (D11)), 2, and Z_ act at the top and bottom of the state ‘lad-
der’, respectively, to annihilate the state rather than transform it
(they are therefore also called creation and annihilation operators).
That is:

Ly =2 |ul)=0. (D17)

Notice that beginning with any single eigenstate for a given value of
/1, one could use the ladder operators to determine every other pos-
sible state of equivalent /;-value.

D.1.4. Determination of eigenvalues using ladder operators

With an understanding of the ladder operators, consider the
operator Z_ ., which we now use to determine the form of the
eigenvalues 4, and m. Using Eq. (D12), we have

§—§+ = (§x - i:(iy)(@x + i@y)
=P Hid DLy~ il D+ PP
= P2 P i( DLy~ Zy )
=72+ 72 +i{’§x,§y] =2+ P24,
=P P L, =P P (LD - 2,
— P2, (D18)

Applying this operator to an eigenfunction with maximal m = [,

22 |\ily=2_(0)=0,

— — D19
(32 7 gzwhz) = (- -l =0, (B19)
which implies
J=11+1). (D20)

Using identical reasoning for the operator %, #_ = 42 — ¢* + &,
and applying it to an eigenfunction |/, I') with minimal m = I, one
obtains

a=r{l-1), (D21)
which in consideration of Eq. (D20) indicates
I+ =rd -1
I+0H(+1)-1=0

=1 =-L1+1.

(D22)

The solution I' = [+ 1 is inadmissible, since it violates our defini-
tion of | = My, and implies I' > I. Thus we conclude that I' = —I,
and m may thus take any of the 21+ 1 values from [ to —I, in
integer steps:

m=I11-1,... —1+1,-I (D23)

One may see this easily by starting at the top (m = I) of the of the
eigenstate ‘ladder’ and working down to the bottom (m = —I) by re-
peated application of Z_.

As for I, consider that, starting on either end of the eigenstate
ladder, one can reach the other end in n steps, where n is some
integer; but we know that the number of necessary steps is just
2l (i.e. 2l is an integer)

2l=n = l=n/2. (D24)

Since n is an integer, this implies that | may take on integral (even n)
or half-integral (odd n) values. As it happens, only integral values of
I are permissible for orbital angular momentum. There are many
justifications of this constraint; the simplest is to consider some-
what more concretely the action of %, on an eigenfunction ex-
pressed in spherical coordinates. Using the last line in Eq. (D3),
we have:

Lola,m) =ml|i,m) = fi%\/l,,m% (D25)

from which we infer that |4, m) behaves like e™?,
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. 0 img e img im¢
—10—¢ [e™] = —i(im)e™? = m ™. (D26)
However, if half-integer [ - and therefore half-integer m — were al-
lowed, the wave function would not be single-valued under a 27

rotation (which should leave the system invariant):

oimCn) _ {-1—1, m = integer, (D27)

—1, m = half integer,

This confirms that I and consequently m take only integer values.

D.1.5. Determination of /.

In the preceding treatment, it was unnecessary to determine the
actual values of the constants 4, and /_ appearing in Eq. (D16).
However, because the ladder operators appear throughout the
main text and in many practical applications, it is worth determin-
ing the values /., as we shall do presently. As noted earlier, we
have @‘i = :?p Therefore, we may take the adjoint of Eq. (D16)
as follows:

Do ym) = (G, mE 1)
( i|lA>) (2| N (D28)
(A,,m|££¢ = (A,,m + ]u;

Using this result, we may calculate the expectation value
(A, m|L =% |4, m) as follows:

Gim| Lo Ly, m)y = (ym £ 1|70, m+ 1)

=2 (ymET,m+1) = A (D29)
However, we can calculate the same entity using Eq. (D18):
(ML P o, m) = (4, m|(L? — L2+ L)\, m)

= (y,m|(4 —m? £ m)| 4, m)

= (J —m? £ m){Jy, m|Jy,m)

=hy-m?*+m=II+1)-mm=1). (D30)
Using the previous two equations, we may then write,
P =1(1+1) —mm=£1), (D31)
which is to say,
he= [l + 1)~ m(m£1) (D32)
or alternatively,
e =/(lFm)(I+m+1). (D33)

Both expressions appear often in the literature, and are equivalent.

D.1.6. Summary

Given the extensive use of angular momentum operators in Sec-
tion 4, it is worth summarizing the results obtained in this section.
We have defined the orbital angular momentum, the related oper-
ators, and the eigenfunctions and calculated the corresponding
eigenvalues. Here we review the key results. _

The quantum mechanical vector operator # has components
(which are themselves operators)

- (0 0

where {j,k, I} ={ x,y,z} and cyclic permutations. These operators
obey commutation relations of the form

(D34)

[Tg?j, 3,/7,(] —i7, (D35)

where again {j, k,I} ={ x,y,z} and cyclic permutations.

The total angular momentum squared operator #2 is defined as

P =S L=+ L+ 7] (D36)

and commutes with each of the components of 2. We may choose
functions that are simultaneously eigenfunctions of %2 and only
one of the components of 2, which we choose by convention to
be Z,. We label each of these eigenfunctions |4, m) according to
the eigenvalues 4 and m, of 22 and &,, respectively. In fact, it is
more practical to label the eigenfunctions as |I, m), where [ is related
to 4 according to 4 = (I + 1). Thus

22|1,m) =11+ 1)|L,m),

_ (D37)
Zl,m) =m|l,m).

The label [ is related to the system’s total angular momentum
(squared), and is called the orbital angular momentum quantum
number or azimuthal quantum number, while m (which is related
to the component of the angular momentum in the z direction) is
known as the magnetic quantum number. | may take only positive
integer values (i.e. [=0,1,2,3,4...). Given a particular value of
I, m may take any of the values between I and —I, in integer steps:

m=10L1-1,...,0,...—1+1,-I (D38)
Finally, we note the so-called ladder operators,
P.=9+i2, (D39)

which are non-Hermitian, #/. = -, and obey the relations
7.2.] -0 [2.7.]-+7.

SN e (D40)
[gg, ,y,] -2,

The ladder operators act on the simultaneous eigenfunctions of 22
and ¢, according to

Zollmy = \Jld+1) —mm=1) [LLm=1)

= JAFmyI£m+1) [,m+1). (D41)

For eigenfunctions labeled by maximal or minimal values of m
(m = +I and m = —I, respectively), the ladder operators act to anni-
hilate the state

ZAL =2 |-y =0. (D42)

Note that all the results derived in this section are equally appli-

cable to the spin angular momentum operator #. In this case,
however, | and consequently m can take half-integer values. For
example, for a spin-1/2 system I =1 and m = +1.

D.2. Spherical harmonics

D.2.1. Definition

When considering orbital angular momentum, spherical polar
coordinates provide a logical and natural representation in which
to perform explicit calculations. In this coordinate system, the
eigenfunctions |I,m) of 22 and 2, are given by the well-known
spherical harmonic functions:

The Y[*(0, ¢) for m > 0O are given by
T 1) B b1
Y70.9) = (1) [T}
L M}l/z ime (i —mL . 2l
2 {(21)!(1—m)! emt(sin6) dicoso) ™ (sin6)”.
(D44)
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Forms for m < 0 may be obtained by successive application of
the lowering operator #_ to Y?(6,¢), or more simply through
the relation

Y70, ¢) = (=1)"Y"(0,4).

Note that for m = 0, the spherical harmonics have no ¢-dependence
whatsoever.

The spherical harmonics may also be expressed in terms of the
so-called associated Legendre polynomials P;"(cos6) (again with
o<m<l):

(D45)

2l l-mn"? .
Y0, ) = (~1) [%} ¢ P (cos 0), (D46)
where
P/"(cos 0) = sin™ O%P,(cos 0) (D47)

and the ordinary Legendre polynomials P;(cos 0) are given by

I

Py(cos 0) (cos? 0 — 1)]. (D48)

21 d(cos 0)'

The spherical harmonics may naturally be thought of in terms
of (2] + 1)-member groups sharing the same value of I. Functions
Y['(0, ¢) of the same I-value are said to be of the same rank.

D.2.2. Orthonormalization
The Y['(6, ¢) are orthogonal and normalized in the sense that

/O' " /O " Y™ (0, )Y (0,¢)sin0d0dd = Sy S, (D49)
where 6, is the Kronecker delta.
D.2.3. Addition theorem
The Y['(0, ¢) obey the so-called addition theorem:
(2’4%1> UZY?(H, 0) = Py(cos 0)
= ily?"*(Ol,tbl)YT(()z,qbz)- (D50)
m—

D.2.4. Explicit expressions for | < 2
For reference, we list the first several spherical harmonics:

Yo = (4m) 1

Y1 = +(3/8m)""? sin ge*i*

Yy = (3/4m)" cos 0

Y;? = (15/32m)"? sin” 0e*2i
Y;' = +(15/87)"/% sin 0 cos e**
Y9 = (5/16m)"/*(3 cos? 0 — 1).

(D51)

D.3. Orbital angular momentum operators as generators of
infinitesimal rotations

D.3.1. Unitary transformations and generators of infinitesimal
transformations

Suppose % (5©) is a unitary operator defined as
U(50) =1+1507, (D52)
where 60 is an infinitesimal, real quantity, and the operator 7 is
Hermitian, 7' = 7 (J must be Hermitian for % to be unitary).
Thus, % is very nearly equal to the identity operator, but creates

an infinitesimal transformation due to 7, which is therefore called
the generator of infinitesimal transformation.

Repeated unitary transformations constitute a single ‘net’ uni-
tary transformation; a repeated change of basis is equivalent to a
single change of basis from the original to the final representation
(see Appendix A.4.1). We may then regard a finite unitary transfor-
mation as the sum of infinitesimal ones, dividing the finite ‘step
size’ @ into n smaller steps of size ®/n and considering the limit
as n — oco. We write:

7(0) = lim (ﬂ +i%’f> —exp (107 ). (D53)

n—oo
and we may alternatively interpret the operator exponential on the
right-hand side of Eq. (D53) as the power series expansion.

D.3.2. Rotations

As discussed in Appendix A.4.3, rotations are unitary transfor-
mations, and we therefore expect to write a rotation operator in
the form of Eq. (D53). We define a positive angle of rotation as
one for which turning a right-handed screw about its axis through
the specified angle would advance the screw forward along the
axis, away from the origin. We specify a given rotation &,(®) using
a unit vector é, lying along the axis of rotation, and a (positive or
negative) angle of rotation ®. That is, Z,(®) rotates a state vector
|®o) around e, through an angle ©, transforming it into
) =| @ + 6)

Z1(0)|®o) = | ). (D54)

Note that this is an active transformation, operating on the physical
system. An equivalent passive transformation would rotate the
coordinate system in the opposite sense, that is, through an angle
—0 (see Appendix A.4.4).

For convenience, consider a rotation around the z-axis (that is
é,=¢,) by an angle ¢. As ¢ —0, Z,(¢)— 1, and therefore
|®) — |®g). Then for very small ¢, we may replace |®) with it a
Maclaurin series expansion of |®y)

@)= G lt0)=exp (6 57 ) 00 Z(0) —exp (~0)

“~ n
(D55)
or making use of Eq. (D3)
7:(9) = exp (~i9 Zz). (D56)

Thus, comparing Eqs. (D56) and (D53), we see that the angular
momentum operator %, is the generator of infinitesimal rotation
about the z-axis (alternatively, some authors use Eq. (D56) to define
Z,). Generalizing this illustrative result to an arbitrary axis of rota-
tion is straightforward, and yields
74(0) = exp (—i@ 7 -é,,), (D57)
where - denotes the dot product, and 2 is the angular momentum
vector operator with components %, ¥, and %,.

D.4. Euler rotations

D.4.1. Definitions

As mentioned in Appendix D.3.1, successive unitary transforma-
tions constitute a single ‘net’ unitary transformation. Thus, one
may specify the total reorientation achieved by repeated rotations
as a single rotation through a proper angle ®, about an appropriate
axis defined by the vector é,. Therefore, any reorientation in three-
dimensional space may be specified by just three parameters: two
to define the orientation of e,, and one to indicate @. Euler first
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X

X,

Fig. 1. The Euler angles ¢,6, and ) describing transformation from the initial
Fi = (X1,y,,21) frame to the final F, = (x,,,,2;) frame. The three Euler rotations
are made in order about specific axes as denoted in the figure. The line of nodes N
marks the intersection between the x;y, - and x,y,-planes (shown as white and gray
discs, respectively), which are tilted relative to one another by an angle 6.

proved this property of rotations, and the so-called Euler angles
Q= (¢,0,7) (we also use 0 and ¢ for spherical polar coordinates;
see Appendix D.4.3 for a discussion on conventions) and associated
rotations that bear his name comprise a convenient means for
specifying reorientations.

Euler angles are used to describe the transformation whereby
a set of axes F = (x,y,z) initially coinciding with F; = (x1,y;,21)
is made to coincide with another set F, = (x»,Y,,2>) sharing a
common origin. For example, consider the passive transforma-
tion (see Appendix A.4.4) from the ‘space-fixed’ coordinates of
the laboratory (LAB) to the ‘body-fixed’ coordinates of a diffusion
tensor or interaction tensor principal axis frame (PAF). Similarly,
Euler angles may be used to specify the active rotation of func-
tions, tensors, or rigid bodies within a fixed coordinate system.
The prescription [50,76-79] for Euler rotations is as follows
(Fig. 1).

Step 1. Assume two stationary axis systems F; and F,, and one
axis system F which rotates. Initially, F and F; coincide. Rotate
the axis system F counterclockwise about the positive z;-axis
by an angle ¢. This carries the y-axis into the so-called line of
nodes N along the intersection between the x;y,- and x,y,-
planes.

Step 2. Looking along the line of nodes N towards the rotated
positive y-axis, rotate the F axis system counterclockwise about
N by an angle 6. The z- and z,-axes now coincide, and the x-axis
now lies in the x,y,-plane.

Step 3. Finally, rotate the F axis system counterclockwise about
the z,-axis by an angle y. The F axis system now coincides with
F,.

Note that the angles ¢ and 0 are equivalent to the identically-
named spherical polar coordinates; the former fix the axis of the
final Euler rotation just as the azimuthal and polar coordinates
fix é.. Thus, ¢ and 0 fix é,, while y = ©.

To avoid redundancy, the Euler angles, like the spherical polar
coordinates, are confined to the particular ranges:

0<¢p<2m 0<O0<m 0<y<2m (D58)

D.4.2. Rotation operators parameterized by Euler angles

D.4.2.1. Active rotations. Making repeated use of Eq. (D57), we may
write the active rotation of a state vector |®,) to |®) as specified by
Euler angles

7(Q)|®o) = Z($,0,7)|®o) = | D), (D59)
where
D(Q) = T($,0,7) = D2, (1) In(0)Z,($)

= exp(—i) Z,) exp(—i0 L y) exp(—ip Z7,). (D60)

Eq. (D60) is somewhat cumbersome because it contains angular
momentum operators referenced to both the F; and F, coordinate
systems. In fact, we may write the rotation operator referenced en-
tirely to the F; coordinates, by proceeding as follows.

Zx(0) may be regarded as a rotation about the y, axis under the
transformation @Zl (¢); that is, as a rotation about the y-axis of a
coordinate system rotated relative to F; by ¢ about the z;-axis.
According to Eq. (A16), we may write this transformation in the
original F; frame as

IN(O0) = Doy (§) Dy, (0) 72, (— ).

In similar fashion, @ZZ (y) is equivalent the rotation @Z] (y) under the
transformation 2y(0)

D2,(7) = IN(0) D, (7)In(—0)

or employing Eq. (D61),

(D61)

(D62)

2()=Z2(9) 2y (0 Z2,(~$) T2, (7)) D2, ($) Dy, (—0) T2, (— ).
(D63)

Since rotations about the same axis obviously commute, we
may write

(SN}

D0,(0) = D2, ()2, (0)D 2, (7)) Dy, (—0) T, (—) (D64)
Inserting Eqs. (D61) and (D64) into Eq. (D60), we have
D($,0,7) = D2, () Dy, (0)Z2, (7) Dy, (—0)
Doy (=) D2, ($) 2y, (0) (D65)
Do (=) T2, ()
Z($,0,7) = 2,($)Zy,(0) 72, (7)
= exXp(—ip ¥, ) exp(—ibL,,) exp(—iy ZL,,). (D66)

Eq. (D66) expresses the rather unexpected, yet highly useful result
that the Euler rotations may all be carried out in the same frame F,
with the order of the rotations reversed.

D.4.2.2. Passive rotations. A passive rotation affecting the coordi-
nate system rather than the state vectors is equivalent to an active
rotation of the state vectors in the opposite direction with the
coordinates fixed, as described in Appendix A.4.4. Thus, if we desire
a passive transformation between bases, we subject each basis vec-
tor to a transformation of the form of Eq. (D66), and the coordi-
nates of the state vectors transform as if the vectors had
undergone the inverse rotation.

It is clear from geometrical arguments that the inverse rotation
is achieved by reversing the order of the Euler rotations, and rotat-
ing through negative angles:

@71 (¢7 07 '))) = @(,% 767 7¢)

— _ _ (D67)
= exp(iyL;, ) exp(i.Z,,)exp(ip £ ).

Thus, in performing a change of frame from F; to F, (see Appendix
A.4.1), state vector components transform according to
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10)") = exp(iy Z2,) exp(i0 Z,)

D68
exp(i¢ 75, ®) ™. (o8

D.4.3. Conventions and notation

The prescription given above for Euler rotations is the one most
commonly adopted throughout physics and NMR literature. How-
ever, as with spherical coordinates, multiple conventions exist, and
one must pay careful attention to conventions when consulting
any reference. See p. 108 of Ref. [79] for a helpful survey of
conventions.

The Euler angles frequently appear in the literature as «, 8, and
7. We prefer to use the symbols ¢ and 0 for the first two angles be-
cause of their equivalence to the spherical polar coordinates, as
mentioned above. Note, however, the reversal of the order of
appearance of ¢ and 0 in spherical polar coordinates vs. Euler angle
specifications.

Euler angles are sets of angles, but not vectors, and therefore no
simple rules of addition, subtraction, or commutation apply (this is
a result of the non-commutivity of rotations about different axes).
For example, since Euler rotations involve multiple rotations in
prescribed order, reorientations specified by the angles Q are in
general not undone by rotations through the angles
—Q = (—¢,—0,-7); that is to say, —Q does not specify the inverse
of the transformation specified by @, and vice versa. In fact, as
noted earlier, the inverse of the transformation specified by Q is
accomplished by rotating through the negative angles —, but per-
forming the rotations in the opposite order, i.e. Q' = (=7, —0, —¢).
Some authors do use —Q to specify the inverse of the transforma-
tion specified by Q, which is indeed tempting, for it appeals to the
intuitive notion that rotation through a negative angle should gen-
erate an apposite configuration compared to a rotation through a
positive angle. However, such notation obscures the fact that Q
represents a set of angles and that these Euler angles are not in fact
a symmetric set of parameters. We avoid potential confusion by

using the notation Q! instead.

7)) =2(Q7") # 9(-Q) (D69)
Likewise, performing the rotation specified by Q;, (e.g. from
frame F; to F,) followed by the rotation specified by Q,3 is not
equivalent to the rotation specified by Q15 + Qy3 = (15 + a3,
012 + 023,715 + V53). We prefer instead the notation ;3 = Q15 23
to specify the total resulting transformation.
D(Q13) = Z(Q23)2(Q12) = Z(Qu2-23) # D (13 + D3) (D70)
Different authors adopt different points of view regarding how
the rotation operator is to be applied, i.e. whether it is an active
transformation on the state vectors (the physical system), or a pas-
sive transformation that rotates the coordinate axes. Section 1.15
of Ref. [78] provides a helpful account of the conventions adopted
by various authors of standard texts, as well as making note of

some inconsistencies. Wolf [80] offers a particularly enlightening
and detailed discussion of these matters.

D.5. Wigner rotation matrices

D.5.1. Definition

Matrix representations of rotation operators in the basis of %2
and , eigenfunctions Y[ (0, ) = |l m) are known as Wigner matri-
ces [81], which we introduce now. ~

The arbitrary rotation operator %,(@) = exp(—i@ < -é,) com-
mutes with &2,

{exp <—i@ f?? -én> , @2} = Z %(—i@)" [(é .é,I)v, @2} =0.

(D71)

2 commutes with the angular momentum operator & -é, refer-
enced to any axis n (see Eq. (D7)). Thus, the rotated eigenfunction
Z,(0)|l,m) is still an eigenfunction of #2, and its eigenvalue is
unchanged:

Z (@n(@)|l, m)) = 7.4(0) (?2”., m)) =1+ 1)(%(@)\1, m>).
(D72)

This is fairly intuitive: the total angular momentum (squared) does
not depend on a particular orientation or choice of coordinates. The
projection of the total angular momentum onto a the z-axis, how-
ever, does depend on orientation and choice of coordinates, and
the eigenvalue m of Z, is therefore not preserved under rotation.
Rather, the rotated function Z,(®)|l,m) is a superposition of eigen-
functions |I, k) with different eigenvalues k but the same . We may
write this rotated eigenfunction, then, as a linear combination of the
complete set of 2+ 1 eigenfunctions |, k), each weighted by
(1,k|Z,(©)|l,m), its projection onto the rotated state vector

1

k=-1

1

k=-1

1
=3 (. 0,7)I1K)

k=-1

(D73)

D.5.2. Evaluation of matrix elements

The coefficients 2%, (¢,0,7) = 24, (Q) of the expansion in Eq.
(D73) are simply the matrix elements of the rotation operator ex-
panded in the basis of eigenfunctions |/, m), that is, elements of the
Wigner rotation matrices. Like the spherical harmonics, the Wigner
elements (also commonly referred to as Wigner functions), are nat-
urally grouped by [-value, and functions with equivalent values of |
are said to be of the same rank. By convention, the matrices are ar-
ranged with k decreasing from top to bottom and m decreasing
from left to right. For example, for [ =1 (i.e. rank 1) Wigner func-
tions, we have

7u(Q)  73(Q)  71.4(Q)
TR = | Z(Q)  Z0(Q)  Z54(Q) (D74)

7141(Q) 250(Q) 7Y 4(Q)

Computation of the matrix elements is relatively straightfor-
ward. First, we note (by analogy to Eq. (67)) that

exp(—i®Z,)|l,m) = exp(—im®O)|l, m). (D75)
Then we may write the matrix elements as
@im(d)', 0, V) = <la k|“@(¢7 0, V)|l~ m)

= (I, k|exp(—ip Z,) exp(—i02,) exp(—iyZ,)|l, m)

= exp(—ike) exp(—imy)(l, k| exp(—i0 2, )|I, m)

(D76)
and therefore
Din(,0,7) = eXp(—ike) exp(—imy)dy,, (0) (D77)
where
di,.,(0) = (I, k| exp(—i0Z,)|I,m) (D78)
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Table 3
Rank-1 reduced Wigner functions, dj,, (6).
k m
1 0 -1
1 cos? () Z3siné sin? (&)
1 e
0 ﬁsme cos Z3sin 0
—1 sin® (9) \lﬁsin() cos? ()

is referred to as the reduced Wigner rotation function/matrix ele-

ment. The derivation of closed expressions for dj,, () (of which sev-
eral are available, the first given by Wigner [81]) is somewhat
laborious, and we therefore make note only of the result:

i () = /(4 RN — RO+ m)1 (1 — )1

(—1 )k—m+s (COS %) 2l+m—k-2s (sin %) k—m+2s

(I+m=s)l(k—m+s)(l-k—s)s!

(D79)

The summation in Eq. (D79) extends over all positive values of s
for which none of the arguments of the factorial terms in the
denominator is negative. Clearly, dgo(é)) = 1. Tables 3 and 4 provide
complete expressions for the first- and second-rank reduced Wig-
ner functions.

D.5.3. Properties

Wigner functions of rank [ may be used to rotate spherical har-
monics of the same rank. More generally, any irreducible spherical
tensor T, of rank [ with components Tf‘ may be rotated according to
Eq. (D73),

!
' =Y Dn( Q)T
k=-1

(D80)

That is, in general, when rotating a tensor from an ‘orientation A’
where it has components Tf to another ‘orientation B’ in which
the components are T;" (connected by the Euler angles Qqz), each
component T" of the rotated tensor may be calculated using Eq.
(D80).

Note that Eqs. (D77) and (D79) define the Wigner functions for
active rotations, which we have chosen because we find the pre-
ceding explanations somewhat more intuitive from this point of
view. Expressions for passive rotations (i.e. coordinate transforma-
tions) may be easily obtained by making use of Eq. (D67) (that is,
by changing the sign of all Euler angles, and interchanging ¢ and
) or more simply, by noting that Wigner matrices are unitary
Dien(D) = Vi (=70, =) = D1 (). (D81)
Then to perform a coordinate transformation from the F; initial frame
(typically aninteraction frame) to the F; final frame (typically the lab-
oratory frame)on the tensor T;, one simply subjects its components to
the inverse of the transformation in Eq. (D80). Then

T)'(F2) = ijk Qu)T{ (Fy),

k=1

(D82)

where Q, is the set of Euler angles describing the rotation of the F,

coordinate frame into the F, coordinate frame. Note that some ref-

erences define the Wigner functions to produce passive rotations, in

which case the usage of Eqgs. (D80) and (D82) would be reversed.
The reduced Winger functions obey the relationships,

iy (0) = di(—0) = d'_,(0) = (~1)"*d,(0) = (-1)"*d",_,(0)
(D83)

from which it is straightforward to see from the definition in Eq.
(D77):

Dh(Q) = (1) G"_(Q). (D84)

A well-known property of unitary matrices is that their col-
umns, when treated as vectors, are orthonormal to one another,
with an identical relationship holding for the rows. Since the Wig-
ner matrices are unitary, we may therefore write the orthogonality
relationship

> Din( D Zj(2) = Sy (D85)
k=-1
for the columns and
I
Y D QD1 (R) = s (D86)

k=—1

for the rows.
It is easily shown [76] that Wigner functions are also orthogonal
in the sense that

) 8m
[ Hie @918 = 5 51500mm, (D87)
where
. 21 T 2T
/dQ:/ d¢/ desine/ dy. (D88)
Jo Jo 0
This orthogonality makes the normalized Wigner functions
21+ 1
D= { 3 a9 (Q)}, (D89)

an ideal basis set in which to expand other scalar functions.
For the rotation specified by Q13 = Q1,_.,3, the following ‘addi-
tion theorem’ applies:

m(Q13) = Z“/kn (212)2 m (Q223).

n=-I

(D90)

Finally, we note that the normalized spherical harmonics may
be easily expressed in terms of Wigner functions,

Table 4
Rank-2 reduced Wigner functions, dim(e).
k m
2 1 0 -1 -2
2 cos*(9) —1Egslsing \/%sin2 0 —1=g=tsing sin (§)
1 1‘3’”“51[1 0 COS2 0— 1—c205 0 7\/§Sin(20) 1+c205() _ COSZ 0 _ 1—::205 {)Sil'l 0
. . 1-+3 cos(20) . .
v \/gsm2 0 \ﬁsm(ZG) - —\ﬁsm 20) \/gsm2 0
-1 1-cosl gin ]+cos 0_ cos? 0 3 . cos2 0 — 1= cos() _ 1+c0sOgin g
2 §sin(20) 2
— s 4 1—cosd g 1+cos0 4 (0
Z sin”(3) Feisin0 \/gsmz 0 F=tsing cos* (5)
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m 21+1,
Y70, 8) = \| = Zmo(: 0. 7), (D91)
Vi (0.) = \ 2 0.0, (092)

and likewise the associated Legendre polynomials are given by

P($,0,7) = Py(cos 0). (D93)

Appendix E. Diffusion equations and operators
E.1. The diffusion equation

E.1.1. Derivation

In this section we derive the rotational diffusion equation [82-
85] from first principles, employing arguments from Newtonian
and statistical mechanics [86].

P _ 7. [(67YD)re o)

~Z.D-ZP(Q,t|Q). (E1)

Bulk materials such as liquids, membranes or proteins are
many-body systems (i.e. systems of N interacting particles), and
the motional processes in these systems can be defined by New-
ton’s equation:

2
m 2= = LU T ), (E2)
8t or;
where the position of ith particle is described by r;. This equation
becomes unwieldy to solve exactly when the system is large, i.e.
the number of particles, N, is large. However, some processes can
be described with only a few degrees of freedom: instead of using
the positions of all particles, the position of the center of mass is
sufficient to describe motional properties (e.g. translational or rota-
tional diffusion).

For a set of N particles of mass m let us consider a small subset
of three degrees of freedom, with generalized coordinates
d1, 92, gqs- The evolution of these coordinates can be described
by a Langevin equation [87]:

¢ __9 U E3
quj'*—a—qj (91,92,93) — Vatqj+6€1() (E3)
withj=1,2,3.

The first derivative on the right-hand side is the force derived
from the effective potential U(q,,q,,qs). The second term is a
friction force exerted by surrounding molecules (i.e. elements
outside the subspace spanned by the three degrees of freedom
under consideration). Note that, in this case, the projection of
the friction force along one dimension does not depend on the
coordinates in other dimensions. The friction coefficient ) is in
general a tensor quantity. We treat it as a scalar in the present
discussion for simplicity. The last term in the above equation is a
stochastic force due to the collisions with surrounding mole-
cules. The sum of the last two terms is the so-called Langevin
force [88], where ¢ represents the amplitude of the stochastic
force.

Let us consider Eq. (E3) along one of the three dimensions.
dg;
dt

The process of interest here is stochastic and can be described
with a stochastic differential equation (SDE):

We define a ‘vector’ r = {:1 } withr; =m and r, = mg;.
2

01O _ Ajfe),0+ BlF 0. oy (E4)

A[r(t),t] is the drift term and B[r (t), t] is the noise term. When the
fluctuation term E(t) is set to zero, Eq. (E4) describes the determin-

istic drift of particles due to the force ;\[?(t), t] [83].
We have:

F(ry/m) —
T

Alro.0- | mim)

Bire.o - [g o (ES)

_ 9
with F(q;) = — ag U1 @2, d)-
J

The stochastic term ¢;(t) averages to zero:
€(t) =0. (E6)

It corresponds to events (collisions) that can be considered instan-
taneous and uncorrelated, so that

€i(t1)€i(to) = 056(t1 — to). (E7)

At this point we make use of Itd’s formula to write the SDE for a
distribution function f[r (t)]. The derivation of Itd’s formula is be-
yond the scope of this review, and a detailed discussion can be
found elsewhere [89].

)= ZAi(aJ [r(t)])dt + Z By (O[T (6)])dw (£)

ZB,kBJk (i [ ( (E8)
ijk
where
o= ijk=123 (E9)
11— 8q17 7]7 - ) ? N

Taking the average, df[r (t)], of df[r (t)], the second sum vanishes
because B and 9;f[ (t)] are statistically independent of dw;(t), and
dw;(t) = h(t)dt.

Finally we can write the average of the time derivative of the
distribution function as:

%WMZZMWWWH%Z$FMWMMW (E10)
1 y

where BT is the transpose of B. The term %f[?(t)] can be written in
terms of the sum of all possible jumps with probabilities
P(r,t|ro,to):

f[r ]7/f r t\ro,to)d (E11)
Eqgs. (E10) and (E11) yield
/ fIrOP(r t[ro,to)d T
[ SAGfr©)
:t/ ar| T [Pt to). (E12)
+3 ,—Z,-[B - BT];(9:0,f [r (1)])

Eq. (E12) can be simplified by changing the order of the partial
differential operators. For further simplification we can assume
that there is a subspace, S, with a surface s on which the result
of integration is a good approximation. Then the first sum in Eq.
(E12) becomes:
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/erA (O [T (O)P(T,t|To, to)
- drf[r]zaiAiP(?7t\?0,to) (E13)
S i
n / dr (Z OAFIFIP(T, tTo, to));
/dr ZA (O [r(ODP(T . t]T0,to)
—/Sdrf[r}Z@,—A,—P(?,t\?o,to) (E14)

+/ da-Af[rIP(r,t|To, to).
S

The second integral on the right-hand side is the surface term.
Assuming that P(T, |7, to) is of finite spatial extent in a way that
it vanishes on the boundary, 0s, the surface term can be neglected.

The same calculation can be applied to the second sum of Eq.
(E12) which then leads to

/'me(?, t[Fo.to)d T

Z&,AP(r t|r0 t())

/drfr ' (E15)
+1 za,a,[s BT];P(r,t|To, to)

Since f[r] is an arbitrary function we can rewrite Eq. (E15) as

7]
r,t|ro,t

8t ( | 0 0)

,Za,AP (. tTo, to) + 5 Za,a, [B-BT|;P(r,t|To,to). (E16)

Eq. (E16) is the Fokker-Planck (FP) Equation. It holds for the SDE
Eq. (E4) in the It6 framework. Thus, a Langevin process, i.e. Eq. (E3),

can be described by the Fokker-Planck equation, the explicit form
of which can be written as:

0, = - ~ F(r o? -

&P(T,t\rmto) = (v. ( +V22y2) P(r,t|To,to) (E17)

with r = g;. o o
In the case of a scalar potential U(T) such that F(r) = — VU(T)

one expects the Boltzmann distribution to be a stationary solution.
The Boltzmann distribution is:

Py(7 [10) = % exp <_IZ(Tr)> (E18)
with
0 pu(F [fo) =0 E19
T 5(1 |10) =0. (E19)
and
Z= / exp <’Z @)d?, (E20)

where Z is the partition function that ensures P(7 |r) is normal-
ized. An alternate form for Z has been defined following Eq. (E63).

Defining a diffusion term D = g2/27? (note that diffusion along
q,,q, and g5 directions are assumed to be same, due to the friction
coefficient y being a scalar; D is in reality a rank-2 tensor, D, as de-
scribed below), writing § = 1/ksT and using Eqs. (E18) and (E19) as
the stationary solution to the FP equation we obtain

(%ﬁu V. F(r (y )> e =, (E21)
and Eq. (E17) becomes
gt (T, t[To, to) = §~(§D—$>P(?,t|?o,to)‘ (E22)

We integrate Eq. (E22) over the subspace S with a number of parti-

cles Ns to give

Ns(t|To,to) = / dr P(r,t|To, to). (E23)
S

We now take the partial differential with respect to time t and use
Eq. (E22) to obtain:

Ns(t|To, to) = / dr v. (€D - @) P(T,t|To, Lo). (E24)
S
We can apply Gauss’ Theorem to give:
gNs(tﬁo,to) :/ d&(%D—F(”) P(T,t[To,t). (E25)
ot as Y

The left side of the equation defines the rate of change of the
number of particles, Ns. The right side contains a surface integral
summing the scalar products between the surface element d a of
dS and j(T,t|To, to), the particle flux at the boundary 95S. Essentially
Eq. (E25) is the continuity equation where:

(T, tTo, to) = (61) - ?) P(T,t[To, to).

Using the stationary solution of the FP equation (the Boltzmann
distribution) with boundary conditions such that at equilibrium
the flux vanishes:

(E26)

Jol(r) = <€DF(vr)) te 11 <o (E27)
Noting that

V De P — g U (vn L PDE(r )) (E28)
one can rewrite Eq. (E27) as

et (D[)’ F(r)+VD— ?) =0 (E29)
from which one obtains

VD =F(r)(y" - Dp). (E30)

Eq. (E30) is known as the fluctuation dissipation theorem (FD).
The FD theorem is better known for the case of a uniform diffusion
constant D, when

DBy =1 <= 0% =2kTy. (E31)

The friction coefficient y depends on the physical properties of
the particle and the environment as y = 67na, where a is the radius
of the particle (the particle is assumed to be spherical) and 7 is the
viscosity. Then

o 1 . kBT
“ By 6mna

Eq. (E32) is the Stokes-Einstein relation for the diffusion constant.

(E32)
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Eq. (E31)is important since it implies a relationship between the
amplitude of the fluctuating forces ¢ and the amplitude of the dissi-
pative forces ). The FD theorem states that for a system to attain
thermodynamic equilibrium, the amplitudes of fluctuating and dis-
sipative forces have to obey a temperature dependent relationship.

We now use Eq. (E30) in the following identity, which holds for
any function f(r):

V.VDf(r)=V-DVf(r)+V-f(r)VD
§-§Df(r):§-n€f(r)+§-ﬁ(%-Dﬁ),

(E33)
(E34)

and using Eq. (E34) for the first term on the right-hand side of Eq.
(E22) one obtains the Smoluchowski equation. The Smoluchowski
equation is also called the Diffusion Equation, and is

OP(r,t|To,t))

o (E35)

-Vv. {DV-&-ﬁDV U(?)}P(?, t[To, to).

Eq. (E35) was constructed assuming a scalar y and therefore a
scalar D, but it can be generalized by replacing the scalar D by
the corresponding rank-2 tensor D with principal values
(D1,D2,D3) and by substituting ro by {q9, 3, q3} where g is the va-
lue of g; at time to. In the PAF of the diffusion tensor:

D 0 O
D=0 D, O
0 0 Ds

(E36)

We obtain:

OP(q1, 95,93, t]9, 43,93, to)
at

— _V.|D V48D VU({q,,q,.q5)

P(q;.4,, 5. tlq%, 43,93, to).
(E37)

When (q4,9,,q3) = (x,¥,2), Eq. (E37) describes translational dif-
fusion in a three-dimensional space. Rotational and translational
diffusion come from the same molecular processes. They often
have to be considered as coupled. However this coupling does
not affect relaxation in solution, except perhaps when intermolec-
ular effects become important, e.g. in solutions with paramagnetic
ions [1,90,91]. From this fundamental similarity, we derive the
equation of rotational diffusion from that of translational diffusion.
This can be achieved by forcing translational diffusion to take place
on a sphere of radius ro and using spherical polar coordinates
Q=(r,0,4)

We now consider the simple case of isotropic diffusion with a
scalar diffusion constant D. We have for any function f:

8zf 1 af 1 82f
v va Drz {862+tan€)89 sin? 0 06% |

(E38)

Defining D' = D/r? and introducing the angular momentum
operator ¢, we also have:

D’|:62f+18f+ 1 azf:|

:\. ,:\ _ 152 _ -
LDLf=DLf =D\t oot 5o 02|

(E39)

The expressions of Eqs. (E38) and (E39) are equal. This property
can be used twice in Eq. (E37) to give:

OP(Q, t]Q0) _

o _ T D7 P2, 10)

- 707 pui@)]pe.dew. o), (E40)

where Q describes the orientation of the diffusing particle.

A similar development can be used when the diffusion is aniso-
tropic, with a diffusion tensor D, leading to:

w —_2.D 2 P(Q,t|Q, to)
[D 7 L]](ﬂ P(2, £, to). (E41)

where we have written $ explicitly as 1/kgT. In general, we will use
the Euler angles (see Appendix D.4) to specify the orientation Q.

E.1.2. Explicit notation

It is convenient to rewrite the diffusion equation, Eq. (E41), by
explicitly evaluating the terms element-by-element. Making the
substitutions

u=Y8
ksT (E42)
P = P(Q,t|Q),
we can write:
Q.tQ = /s = U P
P20) 5 [(p.7 Y\ pa. 00| - 7D 2 P, t120)
ot ksT
-7 KD yw) } 7.D.2
:_@5[§9+< ) }
/Dy Dy Dy 2.2 P
=—%.| Dy Dy Dy 22 |+ | 2 |7
Dy DZy D, :(l’\yﬁa ?_/?y%
[ (D« %x?+Dyy P+ Dy ¥, 7
=~ 2-|| DpPyP +Dyy Py P+ Dy, 7,7
Dp%x?+Dy P, ?+Dy, 2,2

( X% ) 2+ Dy (5@%)@ +Dy, (@ﬂ/) 7
+| D Zat) 2+ Dy (Zy2) 2+ Do (Z:0) 2
(,fﬂ/) 2+ Dy (fy%) 2+ D, (@Z%) 2

(E43)

Expanding the dot product, we have:

aP(.QI‘Qo) L (DXX@XL@—FDXy@y@-FDXZ@zy)

N (Du(2tt) 2+ D (2,) 2+ D (Z20) 7)
_ (0w Zx2+Dyy 2,7+D,,7.2)
+(D(Z5) 24Dy (Z,2) 7+ Dyr (Z.0) 7)
(Dz@x,@ +D, P, +DZZ§Z@)
|+ (Do @) 74Dy (2,4)2+D(Z.0)7)
(E44)

Which can be written more succinctly with the use of index
notation:

@A)y 7, {ZDI,MM,(M)J}

==Y 2|0y 27 + Dy (Zu) 7).
i

(E45)
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Since the terms Dy are scalar constants and the angular momen-
tum operators are purely differentiation operators, we can factor
the D; terms out of the expression in Eq. (E45), yielding a useful
expression for the diffusion equation in index notation:

8]
ot

Z D, 7|27+ (Z)7]. (E46)

The diffusion equation simplifies considerably if we work in the
principal axis frame (PAF) of the rotational diffusion tensor, for this
frame is fixed to the rotation of the molecule, and the elements of
the diffusion tensor are therefore constant. Further, in this frame,
the rotational diffusion tensor is by definition diagonal. Thus, all
terms for which j # i vanish:

ZD”f,[ P (fi%)?ﬁ]

==Y D[ 227+ Zi(Z) 7). (E47)
i

Many authors write Eq. (E46) with the 2 terms factored-out on the

right side. Indeed, this is convenient, since it facilitates the defini-

tion of a diffusion operator %, i.e.

07~

a—f - 92, (E48)

with:

% =3 D; [’37,.2 + 7 (Z@,Z/)] (E49)
i

However, it is worth noting that Eq. (E48) is at least somewhat
misleading if one evaluates the operator expression rigorously.
This is because the term :(Z,-(@,v%) would appear to operate on 2
as a scalar, i.e. as (??07/)_0/’ rather than Z;((Z;%)#). To avoid con-
fusion, we therefore prefer to write the diffusion operator as

7=-3D {:z + () } ,
i

where the (...),, notation is taken to mean that the terms *..." in-
side parentheses are evaluated and then treated as a single
operator.

(E50)

E.2. Solution to the diffusion equation

To solve the diffusion equation for 2 = P(Q, t|Q), let us use the
separation of variables approach, and assume a solution in which
P(Q,t|Qo) is the product of two functions, f,(t), which is a function
of time only, and ¥, (), which is a function of orientation only:

P(Q,t]Q0) = f, () P,(Q). (E51)

Further, let us assume that ¥,(Q) is the v eigenfunction of the
operator #, with corresponding eigenvalue b,

AP,(Q) = b, ¥, (Q) (E52)
and that ¥,(Q) is normalized, in the sense that
/ P (Q)W,(Q)dQ = 1. (E53)
Inserting Eq. (E51) into Eq. (E48), we have
D (fw,) = W = bW,
ot
of (E54)
v, = _bf, ¥,
ot

since # acts only on the spatial function ¥,, and 2% — 0. We tem-
porarily omit the argument of each function for the sake of tidiness,
but the temporal dependence of f,(t) and the spatial dependence of

¥,(Q) are understood and utilized in the work below. We proceed
by multiplying both sides of Eq. (E54) by the complex conjugate
¥;, and integrating over all @-space, making use of the normaliza-
tion of ¥, (Eq. (E53)) in the second line below:

/,Px af‘ dQ_ 7/ 'I’:b‘fv'f’vdgv

% / Vw40 = _b.f, / e (E55)
of
B~ b,

Eq. (E55) is an ordinary differential equation that is quite easy
to solve by grouping like terms and integrating:

df\
% — b0t

where C is simply an arbitrary constant of integration. It is plain to
see that e% = f,(0), and thus

filt) = £, (0)e ™.
The next step in solving the diffusion equation is to find f,(0).

We do this by multiplying both sides of Eq. (E51) by ¥;(£) and
integrating over all orientations:

/ W (Q)P(2, £/2)dQ = / Q) (0P, (Q)dQ
—f(0 / Q)7 (Q)de,
/ W (Q)P(Q. t]Q0)dQ = £,(¢),

f(0 /lP*

Now, by definition of probability, [P(2,0]Q0)dQ =1, and the
conditional probability P(2,0]Q;) must be zero for Q # Q, (the
molecule can only have one orientation at t = 0, and we have al-
ready defined this to be Q). The function P(Q, 0|Q,) thus qualifies
as a Dirac delta function (2 — ). Thus, we can solve explicitly for

£(0):

= f,=ehteb, (E56)

(E57)

(E58)

P(Q,0[Q0)d®

7.0) = [ (@32 - Q)2 = ¥ (). (E59)

This ‘completes’ our solution to the diffusion equation, giving

P(2,t1Q0) = ¥, (20) Py(2)e ™", (E60)

Up to this point, our arguments have been completely general:
our choice of the eigenfunctions of Z, ¥, (), was completely arbi-
trary. That is, Eq. (E60) is valid for any eigenfunction/eigenvalue
pair ¥,(Q)/b,. By the principle of superposition, a linear combina-
tion of the independent solutions must also itself be a solution to
the diffusion equation. Thus, a more general solution to the diffu-
sion equation than the one in Eq. (E60) is given by

- Y @)@

P(Q,tQ,0) (E61)

E.3. Equilibrium probability distribution

The thermal equilibrium probability distribution function
Peq () satisfies the condition

dPeq(Q)

& =0= —RPeq (),

(E62)

and is related to the ordering potential U(Q) as the Boltzmann
distribution:
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Peg (@) = exp [-U(Q)/ksT]  exp[-U(Q)/ksT]
T Texp [-U(Q)/ksTdQ — Z ’

(E63)

where T is the temperature, kg is the Boltzmann constant, and
Z = [exp[-U(Q)/ksT|dQ is the partition function.

Alternatively, one may consider that the equilibrium probability
distribution Peq(€) is equivalent to the long time behavior of the
conditional probability P(€,t|Qo):

lim P(2,£]) = Peq(©). (E64)

E.4. The diffusion operator

In the principal axis frame of the rotational diffusion tensor, the
rotational diffusion operator is given by Eq. (E50). Note that in the
absence of any ordering potential (i.e. = 0), Eq. (E50) reduces to
the rotational diffusion operator encountered in the discussion of
rigid molecules tumbling in isotropic solvents (Section 4).

E.4.1. Change of variables

When explicitly writing every term of the rotational diffusion
operator, it is helpful to rewrite the diffusion tensor in its principal
axis frame as

Dy 0 O 1+¢ 0 0
DPPAF)=| 0 D, 0 |=p| 0 1-¢0
0 0 D, 0 0 g
g-DstDy . Du-Dy, (E65)
2 “TDu+D,’
2D,
T=Du+D,

This is simply a change of variables employed for mathematical
convenience, and has no physical significance. Nevertheless, it
may be useful to interpret ¢ as an asymmetry parameter of the dif-
fusion tensor. 5 is the ratio of the diffusion constant around the
molecular z-axis (‘spinning’, which is measured by ) relative to
the diffusion constant of the molecular z-axis itself (‘tumbling’,
which is measured by D,;). In other words, 1 characterizes the
anisotropy of the diffusion tensor. These interpretations will be-
come especially clear at the end of the following section; see Eqgs.
(E94)-(E96).

It is convenient to define a ‘new’ diffusion operator as
~ 1
r=-2. (E66)
¢
We can now write the diffusion equation as

107

- = T2
g ot

(E67)

E.4.2. Symmetrization

E.4.2.1. The symmetrizing transformation. The diffusion operator I’
is not self-adjoint; that is, its matrix representation in a basis of
Wigner functions is not Hermitian. For computational convenience
(i.e. because fewer calculations are necessary to solve for the eigen-
values and eigenvectors of a symmetrical matrix), it is convenient
to apply a ‘symmetrizing’ similarity transformation (see Appendix
A4.2) to I'. The transformation is of the form

I =P 2TP2, (E68)
where P/ =P.”*(Q) are regarded as operators, and T is the

resulting symmetrized diffusion operator. A corresponding trans-
formation will be carried out on 2, which we treat as a vector.

The symmetrizing transformation amounts to a change in basis.
Consider qul /2 to be simply an operator that changes the represen-
tation of vectors from one basis to another

P2 v) =|v); PI2V) =) (E69)
with T acting on |#) and T acting on |v)
Tloy) =|v);  Tloy) =|25). (E70)

Under the symmetrizing transformation, the eigenvalues of the
diffusion operator remain unchanged, while the eigenvectors of I
are those of I" multiplied by P,,/*:

Tm) = ijm);  Tlm’) = Ajm) = 2P 1% |m). (E71)

Regarding 2 as vector (expanded, for example, as a sum of Wig-
ner rotation functions), the application of the symmetrizing trans-
formation to 2 within the above framework is straightforward.
Explicitly, from Eq. (E69), we have

5P,

- ~ (E72)
P(Q,t[20) = Peg*(2)P(2, t[Q0)

and the diffusion equation (E67) becomes:

1027 %~

oot ry (E73)

One should avoid becoming overly-concerned with this vector
formalism, however: both # and 2, no matter how they are writ-
ten, are in fact scalars (as is Peq /%, for that matter), and therefore all
the commutation rules of scalar algebra continue to apply. For
example, a separate transformation of the following form may be
convenient:

P'(@2,£]90) = Pe* (Q)P(.t/Q0)Pey* (20) (E74)
and the following diffusion equation is no less valid than Eq. (E73):

7 =~
o7 _ i
g ot

(E75)

E.4.2.2. Evaluation of the symmetrized diffusion operator. The evalu-
ation of the symmetrized operator I is quite laborious. This can be
done by defining expressions for each of the three terms

Pe'? {»’?7 + /371(?1”?/)0[,} Y2 j={xy.z}. (E76)
Explicitly, we have
exp%/2) [ 22 o (5 exp [~ /2]
Sz 7 +$"<$j%>op A
= exp [/Z{/Z] [?jJZ + ?j] (?jjufl> 0p:| exp [_9///2] (E77)

Applying the operator in Eq. (E77) on a test function f, we have
et/2 |:$12 + ij (gja]/> Op} e—w/zf

=" THe ") +e" Ty (Z) (e ). (E78)

op

The explicit expression for the angular momentum operator :Q’\j
is

- (0 9]

where the coordinates {j, k,I} ={x,y,z} and cyclic permutations
thereof.

(E79)
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We now explicitly calculate each term in Eq. (E78). To begin,

Zhe ) - [-i(kg - 5,)}( ~vizf)
_ (81 l%xia@l 1—>( —ul2f)
:Q%_%ﬂqemg;g”wﬂ
()b 120) 120
il k(& -350) - (%350
~tegile 2 (-3 50) 1 (53 50| )
(ES0)
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Expanding all terms but the first, we may write the right-hand side
as

1/, 0 ou\[, (of 10w of 1o
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Recognizing that

L= (- )(gl l;,()(k%_l%)f
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we may write the left-hand side of Eq. (E82) as
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5("@*’%){"(@ 2alf> (afﬁﬁfﬂ
ap Vs 1 az/af 1,201 0f
+ i 2($f”>f+ ok ok T2K o A
1, 0u0f 1,,0u0f
o M (grg\p o L O 100y’
= Zif 5 (F1)f 5K 5 -3¢ (o)
awaf o ou ou of
"” ol ok _klﬁﬁf””ak ol
”32/321 1lza@/af 1, /0u f
2%k ol T2t ok ok ok
200 Of 120m0f 1, oudf 1, 0uf
" 8k8k+_l ool 2k Mo (E8Y
Thus
W25 (i ou of
)2 52 )2 K727 - 2g 2
T ) = T -5 (T R G G
ou aaz/af ou ou
7—1<< )f klal 5% —klﬁmf
8Z/8f 20U Of 1, 2
”ak a1 ok ok ! (ak)f (E83)

Proceeding to the next term in Eq. (E78), we note that
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Therefore,
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Grouping terms and again making use of Eq. (E83), we may
write this as
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Adding together the terms in Egs. (E85) and (E88), the whole
operator applied to f becomes:
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We have finally
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Now, using Eqs. (EG6) and (E90), we may write
f= (74 (70) - (:my)
+ (?3 ;(y v) -5 (2 )
(FE ) L)
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where we have defined the nabla-squared operator as
V=224 22422 (E92)

Note that this V? operator is not equivalent to the Laplacian (which
is typically represented by the same symbol) unless # = 1. It is con-
venient to replace the operators #, and Qy with the ladder opera-
tors #_, since the Wigner functions are eigenfunctions of the ladder
operators, and this makes computations using ladder operators
quite straightforward. With some foresight, we calculate the follow-
ing quantities,

(7.4)(7-4) = [(Z+19,)4] [ (2, -12,)4]

=2 +iz- [ 2 -i2,4]

(@ﬂ/)z + (@ﬂ/)z,

—5(22+22)
—3|(Z+i7) "+ (Ze-12))|

BB iT D+ D T T 0.7, -7, 7,
(E93)
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— 2 — —~ 2 o~ o~ 2
(Zu) = (22 £i2))2| = |2 +i2y2]

(7o) + (Z2) =2((Zaa) - (7)),

The direct substitution into Eq. (E91) yields

P[5 (70)§(79) (7 )i (70)]

Voo o\ o2 oo\l Yo 0NV (T o)
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(E94)
This expression for the fully-symmetrized diffusion operator is
completely general. When the diffuser has axially or spherical
symmetry, the expression becomes simpler. For axial symmetry,

Dy =Dy, =D,. Then, ¢=D,,e=0, and n = D;/D,. The symme-
trized rotational diffusion operator then simplifies to

IE(AXm) = [V%Axial) +% (V?Axial)o//> —% (@g[/) (@y]/) _ %”I (@Z%) 2} 7

V(ZAxial) = @)2( +§}2/ +7I§3
(E95)

For a spherical diffuser, Dy =D,, =D,, =D, and therefore
p=Do,e=0,and n=1:

IE (Spherical) = [V(zslaherican + % (V(ZSpherical) U ) _411 (§+'Z’) (Ef’\j” ) —411 <§2'7/>2] )

V(ZSpherical) = :(;)% + :?732/ + :(?g
(E96)

Appendix F. Nomenclature

t adjoint (transpose conjugate)

T transpose

* complex conjugate

X scalar multiplication or vector cross product, as appropri-
ate to the operands
vector dot (inner) product

® direct (tensorial) product

® tensorial scalar product

. operator (i.e. ‘hats’ above symbols denote they are opera-
tors, e.g. .«/)

il identity operator

1 I x | identity matrix

o constant equal to 1 (Dy + D,y + D;) (also used as an index
in various equations)

| o) eigenstate of a spin-1/2 particle with m =1/2

B constant equal to \/% (DxxDyy + DyyD;; + Dz,Dyx) (also used
as an index, and in Appendix E, a constant equal to k;—T)

| B) eigenstate of a spin-1/2 particle with m = —-1/2

%o notation-simplifying constant (see Eq. (185))

A2 notation-simplifying constant (see Eq. (182))

Jij Kronecker delta function

d(x — xo) Dirac delta function, centered at x
€ constant equal to (Dyx — Dyy)/(Dxx + Dyy)
n constant equal to 2D,,/(Dxx + Dyy)

~

> > F
=

=)

third Euler angle of the set Q = (0, ¢,7) (also used to de-
note the gyromagnetic ratio, and in Appendix E, a friction
coefficient)

rotational diffusion operator equal to 1/p %

symmetrized rotational diffusion operator

I-ranked matrix representation of I' in the basis of the
Wigner functions 9%(9). (Note that the matrix derived
here is in the PAF of the global rotational diffusion tensor
D.)

magnetic dipole moment

permeability of free space, equal to 47 x 10~ ’kg m s 2A 2
g.radient ‘dgl' operator, equal to 5 éx + 5 & + e, in Carte-
sian coordinates P N
nabla-squared operator, defined as 2 + %% + 5.2

set of Euler angles (6, ¢,7) that specify a given Euler/Wig-
ner rotation; for example from the laboratory frame to
some other frame

Larmor frequency

second Euler angle of the set Q = (6, ¢,7) (also used to de-
note the azimuthal angle in spherical polar coordinates)
wave function of the kth particle in an ensemble
normalized eigenfunction of the rotational diffusion oper-
ators # and I', with corresponding eigenvalues b, and a,,
respectively

eigenfunction of the 2@ and I'“)") matrices of rank [
(see ¥,(Q))

eigenfunction of the rotational diffusion operator 2
density operator

matrix element of density operator

density operator in the interaction frame

constant equal to 1 (Dxx + Dyy)

chemical shift tensor

chemical shift anisotropy parameter, AG = o — 0,
component of the chemical shift tensor parallel to the un-
ique axis

component of the chemical shift tensor perpendicular to
the unique axis

time (Used in the change of variables t' = t + 7 in Sections
2.2.3.2 and C.1.)

correlation time

first Euler angle of the set Q = (6, ¢, 7) (also used to denote
the polar angle in spherical polar coordinates)

commutator between a and b, equal to ab — ba
notation-simplifying constant equal to 1 (D + Dyy)

tensor containing spatial dependencies of an interaction
(e.g. dipolar coupling) leading to relaxation

tensor containing spatial dependencies of chemical shield-
ing interaction for spin j

magnetic vector potential (Appendix B) or a drift term
(Appendix E)

some arbitrary, general operator

average value of o/

(quantum mechanical) expectation value of =/

matrix representation of </ in the basis R

matrix representation of </

diagonal component of the rank-0 (isotropic) Cartesian
tensor Ajso 13

eigenvalue corresponding to the ¥,() eigenfunction of
the rotational diffusion operator I', equal to b,/p
eigenvalue of the I'™® matrix of rank I (see b,)

u, v component of a rank-1 antisymmetric Cartesian tensor
constant equal to 1 (Dy — Dyy)

static external magnetic field, which defines the z-axis in
the laboratory frame

eigenvalue corresponding to the ¥,(Q) eigenfunction of
the rotational diffusion operator %
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b eigenvalue of the 2(“)¥) matrix of rank I (see b,)

C notation-simplifying constant equal to D —1(Duw+
Dyy) =Dy~ A

C(h,,l;my,my, m) Clebsch-Gordan coefficients

Djq p,q element of a body’s global rotational diffusion tensor,
in an arbitrary frame of reference

Dpq p,q element of a body’s global rotational diffusion tensor,
in its principal axis frame (PAF)

D, isotropic global rotational diffusion constant (For isotropic
diffusers Dyx = Dyy = D, = D,.)

D, principal global rotational diffusion component perpendic-

ular to principal axis of symmetry for axially symmetric

diffusers (The principal axis of symmetry is taken to be

the z-axis, So Dy =Dyy =D, .)

operator representing a rotation of 6 about an axis n repre-

sented by the unit vector é,

D principal global rotational diffusion component parallel to
the principal axis of symmetry for axially symmetric dif-
fusers (The principal axis of symmetry is taken to be the
z-axis, so D, = Dy.)

7Y(Q)  Wigner rotation matrix of rank I

Z4n(Q)  k,m element of the Wigner rotation matrix of rank [; the I-
rank n, m Wigner function

di.(¢)  k,m reduced Wigner rotation function of rank

D global rotational diffusion tensor. The same symbol has
also been used to represent the dipolar tensor in Sec-
tion 3.1.3

E eigenvalue of a linear quantum mechanical operator, i.e.

e exponential (also denoted exp(...))

ep unit vector in the p direction (e.g. é for a unit vector point-
ing along the x-axis) _

&jj unit vector pointing along a vectorr

G(7) correlation function (see Appendix C)

G, (T) correlation function (see Section 2.3.2)

w total Hamiltonian

o Zeemann Hamiltonian resulting from the external applied

e field, Bg

A1(t)  total Hamiltonian for interactions leading to relaxation,

equal to 37, # ,(t)

Hamiltonian for a single interaction leading to relaxation
(e.g. #pp for dipole-dipole coupling)

Hamiltonian for radio frequency (RF) pulses

h (red;llced) Planck’s constant, equal to h/2m = 1.0545x
107" ]s

V=T (also used as an index)

spin angular momentum operator -
p component of the spin angular momentum operator %
spin quantum number (.# = 1/2 for spin-1/2 particles; also
denoted by m)

Jupap (@) spectral density function

NN
=

k) ket in bra-ket (Dirac) notation, denoting the vector or state
with the label k

(k| bra in bra-ket (Dirac) notation, equal to |k)'

(klj) inner product between kets |k) and |j)

kg Boltzmann constant = 1.3806503 x 1072 m? kg s~2 K

L dimensionless infinitesimal rotation (classical angular

— momentum) vector

7z dimensionless infinitesimal rotation (angular momentum)
operator

Iz dimensionless angular momentum squared operator,

N equal to %2 + 72 + 72

% p component of the dimensionless infinitesimal rotation
operator £

L angular momentum raising and lowering operators (a.k.a
~ ladder/creation-annihilation operators)

M total bulk magnetization of the NMR sample

M, p component of the total magnetization M

My magnitude of the magnetization of the NMR sample at

thermal equilibrium

probability of finding a body in the orientation specified by

Q at time t

2 = P(Q,t|Q) conditional probability of finding a body in orienta-
tion Q at time ¢, given an orientation Qg at t =0

P(Q,1)

R,pwy  the elements of the so-called Redfield relaxation matrix

~ (see Section 2.3.4)

R relaxation superoperator ~

Rg, B, matrix element for the relaxation superoperator, R, in the
By, s basis (see Eq. (244))

Ry longitudinal relaxation rate, equal to 1/T;

R, transverse relaxation rate, equal to 1/T,

% rotational diffusion operator

2?0 |-ranked matrix representation of # in the basis of
the Wigner functions %.,(Q) (Note that the matrix
derived here is in the PAF of the global rotational diffusion

- tensor D.) _

K2 spin angular momentum operator (see .7, ,?p, and .#)

Sup u, v component of a rank-2 symmetric Cartesian tensor

t time

T absolute temperature in Kelvins

T, lattice temperature in Kelvins

Tr(e/)  trace (sum of diagonal elements .«#;;) of the arbitrary ma-
trix .o/

Try(</) partial trace of the arbitrary matrix .«# over the b variables

T, longitudinal relaxation time constant

T, transverse relaxation time constant

m

1 tensorial spin operator of rank I

u(Q) diffusive ordering potential, e.g. the potential that orders
diffusers within a liquid crystal solvent

u ‘reduced’ diffusive ordering potential, equal to U(Q)/ksT

v a vector with Cartesian coordinates vy, vy, and v,

X

tensor containing spin dependencies of an interaction (e.g.
dipolar coupling) leading to relaxation

Y['(0,¢) spherical harmonic of rank [

V4 partition function (see Eq. (E63))

PAF principal axis frame, in which the matrix of an operator is
diagonal (and its principal components/eigenvalues are
the diagonal matrix elements)

AAF arbitrary axis frame
LAB laboratory frame
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